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This paper concerns the two-dimensional motion of a viscous liquid down a
perturbed inclined plane under the influence of gravity, and the main goal is the
prediction of the surface height as the fluid flows over the perturbations. The specific
perturbations chosen for the present study were two humps stretching laterally
across an otherwise uniform plane, with the flow being confined in the lateral
direction by the walls of a channel. Theoretical predictions of the flow have been
obtained by finite-element approximations to the Navier-Stokes equations and also
by a variety of lubrication approximations. The predictions from the various models
are compared with experimental measurements of the free-surface profiles. The
principal aim of this study is the establishment and assessment of certain numerical
and asymptotic models for the description of a class of free-surface flows, exemplified
by the particular case of flow over a perturbed inclined plane.

The laboratory experiments were made over a range of flow rates such that the
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2 W. &. Pritchard, L. R. Scott and S. J. Tavener

Reynolds number, based on the volume flux per unit width and the kinematical
viscosity of the fluid, ranged between 0.369 and 36.6. It was found that, at the
smaller Reynolds numbers, a standard lubrication approximation provided a very
good representation of the experimental measurements but, as the flow rate was
increased, the standard model did not capture several important features of the flow.
On the other hand, a lubrication approximation allowing for surface tension and
inertial effects expanded the range of applicability of the basic theory by almost an
order of magnitude, up to Reynolds numbers approaching 10. At larger flow rates,
numerical solutions to the full equations of motion provided a description of the
experimental results to within about 4%, up to a Reynolds number of 25, beyond
which we were unable to obtain numerical solutions. It is not known why numerical
solutions were not possible at larger flow rates, but it is possible that there is a
bifurcation of the Navier-Stokes equations to a branch of unsteady motions near a
Reynolds number of 25.

1. Introduction

This paper describes the results of a combined theoretical, experimental and
computational study of the free-surface flow that arises when a sheet of fluid runs
down a perturbed inclined plane under the action of gravity. One of the main reasons
for interest in this kind of flow is to establish the efficacy of various asymptotic and
numerical methods in describing viscous free-surface flows that arise in a practical
context. The particular flow that has been chosen is one of the simplest we have been
able to devise for which the related mathematical problem realizes a good theoretical
representation and yet the flow provides a significant test of the solution procedures.
That this goal has been achieved will become apparent as the discussion unfolds, but
suffice it to say that, during the course of the research programme, we have found
that one of the numerical schemes we had intended to use was, surprisingly, not a
viable possibility without considerable modification (see Brenner et al. 1992) and, in
another situation, the experimental results have proved extremely helpful in the
development and testing of a new free-surface solver (Cliffe et al. 1992). Other
methods we have used required the use of unexpectedly fine meshes to achieve the
desired accuracy, and considerable care was needed to obtain convergence of the
(iterative) numerical procedures. These experiences suggest the need for care when
solving flows in more complicated domains and when attempting to model flows with
less stringent control over the conditions than could be realized in the present
experiments.

The flow considered herein exemplifies a class of flows which arise frequently in
applications associated with processing and manufacturing involving the use of thin
films, a class of flows often referred to in the chemical engineering literature as
‘coating flows’. A practical example of such a flow arises in the deposition of films
onto celluloid; another practical application occurs in continuous-casting processes,
and further examples are described in the forthcoming article by Pritchard et al.
(1992). One of the main practical implications of the present study is the provision
of a good estimate of ranges of parameters for which certain approximations, such
as the lubrication approximation, yield a good representation of the experimental
situation. In our view, definitive results of this kind are of great value in developing
experience in the use of simplified models for the understanding of fluid motions.

Phil. Trans. R. Soc. Lond. A (1992)
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Numerical and asymptotic methods for certain viscous free-surface flows 3

There have been several studies of closely related flow problems in recent years.
Hansen (1986) used boundary-integral methods to make numerical studies of the
two-dimensional Stokes flow over an obstacle placed on a tilted plane, and (in 1987)
he applied the same techniques to determine the shape of the free surface when fluid
flows down a tilted plane into a large pool of the same liquid. Pozrikidis (1988) used
a boundary-integral method for the Stokes equations to study the flow of a liquid
film along a periodically structured wall. Several studies have been made of the so-
called coating and rimming flows on the exterior and interior of a rotating cylinder.
One of the pioneering studies was made by Moffatt (1977), and among the more
recent are the studies by Preziosi & Joseph (1987, 1988) and Johnson (1988), from
which papers other relevant references are readily available. Preziosi & Joseph
considered the stability of this class of fluid motion and also made some interesting
experimental studies of the two kinds of flow. They developed a lubrication
approximation for such flows and found that the approximate models used to
describe the flows gave quite good predictions of their experiments.

There are relatively few examples of practical fluid motions for which an absolute
comparison between solutions of the Navier—Stokes equations and empirical data
can readily be made. Several factors contribute to this situation. Most mathematical
theories for the Navier—Stokes equations are based on flows in bounded domains, and
it is most common that non-trivial flows are generated through the imposition of
non-zero Dirichlet data for the velocity field over some portion of the boundary of
the domain. The practicalities involved with the empirical measurement of such data
can be tedious. In addition, great care must be exercised to ensure that inlet and exit
velocity fields are closely maintained throughout the course of an experiment, and
that they are reproducible from day to day. In general, complete characterizations
of such velocity fields would need to be ascertained for every operating condition of
the experiment.

One simple way of obviating this difficulty is to work with flows on unbounded
domains for which the asymptotic structure of the flow field at infinity is known.
Having to find a solution of the Navier-Stokes equation on an unbounded rather
than a bounded domain may seem, at first sight, to be an undue complication.
However, it has been shown by Amick (1977, 1978) and by Amick & Fraenkel (1980)
that, by restricting attention to flows in certain classes of channels and pipes, it is
possible to demonstrate the existence of a solution to the Navier-Stokes equation
over a substantial range of Reynolds numbers. In the event that these channels or
pipes approach a uniform width far upstream and downstream, Amick (1978) showed
that the velocity fields in the pipes approach the appropriate Poiseuille distribution
and that the rate of approach is exponential, at least when the Reynolds number is
not too large. In a study done concurrently with the present work, Abergel & Bona
(1992) have been able to obtain similar kinds of results, for the Stokes equations, for
a free-surface flow down an inclined perturbed plane. The exponentially fast
approach upstream and downstream of these flows to their asymptotic states means
that, by introducing and removing the fluid through sufficiently long uniform
regions, it is possible to obtain a very close approximation to the flow in the
unbounded domain by the flow in a bounded domain. The empirical characterization
of these flow states is often relatively straightforward and the experiment is usually
quite robust in that small changes in the operating conditions lead only to small
variations in the boundary data. These principles are at the heart of the design of the
present experiment, and we shall see that a complete specification of the flow

Phil. Trans. R. Soc. Lond. A (1992)
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4 W. G. Pritchard, L. R. Scott and S. J. Tavener

conditions can be made simply by measuring the depths of the incoming and
outgoing streams, once the basic material properties are known.

The structure of the paper is as follows. In §2 we give the theoretical background
to the study. The mathematical problem used to model the experiments is presented
and a variational formulation of the problem is described to set the scene for the
numerical computations. An approximation to the complete mathematical problem
can be obtained through the use of the lubrication approximation and a description
of a model obtained through such an approach is given in §2¢. Then, to round off
the theoretical discussion, a brief description is given of the calculational procedures
used in the numerical schemes.

The experimental methods are discussed and a complete description of the
experimental apparatus is given in §3. Then, in §4a, a brief description is given of
some test calculations made with the code before we embark on the detailed
comparisons between the theoretical predictions and the experiments in §46—d.

2. Theory
(@) The mathematical model

Consider flow in a channel of width w, the bed of which is located at a height b(%)
above a plane that slopes at an angle  to the horizontal, where b is measured in the
direction § normal to the plane. Let the origin for the coordinate frame (&,#) be
located in this plane. We shall assume that b(#) is smooth and bounded and that &
is supported on a compact set of # Denote max {|b(&)|} by b,.

Let the height of the free surface above the reference plane, in the direction 7,
be {(#), and suppose that {>H as &— + c0. (We shall suppose throughout that {is a
single-valued function of £.) Let ¢ be the volume flow per unit width down the plane
and let ©2 denote the flow domain and write 0£2 for the boundary of Q2. We shall use
the length scale H to characterize €2 and let U:= (Q/H) be representative of the
velocity field. For the time being it will be convenient to non-dimensionalize all
variables with respect to these scales, and henceforth it will be assumed that
variables are in dimensionless form unless otherwise stated. The liquid to be used for
the experimental observations appears to conform closely to the Navier—Stokes
model (see Pritchard 1986). Thus, if we let u(x) denote the fluid velocity at position
xef and let p(x) denote the pressure, then the dynamical equations governing
steady fluid motions in Q are

Ru-Viu=—Vp+Au—_Gj, (2.1)
and div (u) = 0. (2.2)

Here j is the unit vector in the vertically upward direction, R:= UH/v (= @/v) and
G := gH?/vU. In the above definitions v is the kinematical viscosity of the fluid and
g is the gravity constant. The quantity R, the Reynolds number, characterizes the
relative importance of inertial and viscous stresses, and @ is the gravity parameter,
typifying the relative importance of the body forces due to gravity and the viscous
stress field. Note that (R/G): = U/(gH)* is the parameter usually referred to as the
Froude number, ¥. (The gravity parameter G took the value 40.9 in the experiments,
F ranged between 0.09 and 0.95, and the Reynolds number between 0.37 and 37.)

The stress tensor o(x), which is scaled by (pvU/H), where p is the fluid density, is
given in rectangular coordinates, by

O = _paz’j'!' (U 5+ Uy ). (2.3)
Phil. Trans. R. Soc. Lond. A (1992)
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Numerical and asymptotic methods for certain viscous free-surface flows 5

The boundary conditions applying to (2.1) take two forms. On part of the
boundary I3, say, pure Dirichlet-type conditions apply, and on the remainder of the
boundary, I (the free surface), a combination of Dirichlet and stress conditions
obtain. These conditions are as follows.

(i) The Dirichlet conditions are that

u(x)=g(x) for xely, (2.4)

where g is some prescribed velocity field (compatible with (2.2)).

(ii) On the set [}, representing the free surface, there is a kinematical constraint
to be satisfied which, for steady flows, is that the velocity field at the free surface be
tangential to the surface itself. Let n(x) and #(x) be mutually orthogonal unit vectors
at each point x eIy, with n normal to the surface and directed out of 2. Then the
kinematical constraint is simply

ux)n=0 for xelj. (2.5)

The boundary conditions on I arising from dynamical considerations relate to the
stress field:
(@) a shear-stress condition, namely

gyt =0; (2.6)
(b) the normal-stress condition,
oy = (T/pvU)k, (2.7)

where « is the curvature of the surface, reckoned positive when the radius of
curvature is directed into €2, and 7' is the surface tension. Define S := (1'/pvU), which
we shall refer to as the surface-tension parameter. In the experiments, S ranged
between 34 and 1.7.

Consider, for the present, the problem posed by (2.1)—(2.7) on a finite domain
terminated upstream at x = x, and downstream at x = xy, say. A possible procedure
for determining the unknown location of I} is to use the following iterative method.
Suppose that I'% is some given approximation to the free surface. Then, for
sufficiently small values of R, the boundary-value problem posed by (2.1) and (2.2),
together with conditions (2.4)—(2.6) applying on the domain bounded by I'$, has a
unique solution (see Solonnikov & Shchadilov 1973). Thus, a natural way to study
the complete free-boundary problem, including the condition (2.7), is to solve (2.1)
and (2.2), subject to conditions (2.4)—(2.6), with different choices of I',, i =0,1,2, ...,
for the location of the free surface, until the condition (2.7) is satisfied. Since the
curvature, k, represents an elliptic differential operator, the condition (2.7) can be
used in an iterative procedure to define a new approximation to I'%, where the left-
hand side is evaluated by using the velocity and pressure fields computed on the
previous domain. Boundary conditions on I'%, implicit in the formulation of the
complete problem, are needed to fix the solution to (2.7) at each stage of the iteration.
Possibilities that make (2.7) well posed (and see Pritchard et al. (1992) for a more
detailed discussion) are Dirichlet conditions, {(x) = H at x = x,, xy, or Neumann
conditions, {'(x,) =7y, and {(xg) = vy, say, where y,, yp are specified slopes.
Appropriate combinations of these conditions could also be used. (In the case that
pure Neumann data are specified, a further condition would be needed to specify the
integral of ({—H).) This approach to solving the free-boundary problem has been
taken independently by Jean (1980) and by Solonnikov (1980). They showed for

Phil. Trans. R. Soc. Lond. A (1992)
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6 W. G. Pritchard, L. R. Scott and S. J. Tavener

domains of finite extent, in which the free-surface terminates at a solid wall, at a
specified angle, the iterative process just described forms a contraction in suitable
Héolder spaces, when R is sufficiently small.

In some research done concurrently with the present study, Abergel & Bona (1992)
have developed a mathematical theory for steady flows in a channel of infinite
length. They have been able to show, for Stokes flows (i.e. for R = 0) and for
sufficiently small values of b,, that the complete free-boundary problem (2.1)—(2.7)
has a steady solution and that the surface depth {(x) tends exponentially to the
limiting depth H as x—+ c0. The method of proof used by Abergel & Bona is to
utilize the implicit function theorem to demonstrate the existence of a branch of
solutions emanating from the flow down a plane channel as the perturbations are
smoothly introduced. This theory, together with the exponential decay to the
asymptotic states suggests that the problem can be efficiently approximated by
truncating the x variable and solving an analogous problem on the finite domain
xy <& <. The boundary condition on the depth, {, then becomes some
combination of {(x,), {(xg) = H and {'(x,), {'(xg) = 0 (one of each condition at each
point, x, and zg). If the Neumann condition is specified at both ends, then the
volume of 2 (that is, the integral of {) must be specified. It should, however, be noted
that there is as yet no existence theory for the present flow problem on the truncated
domain (see Pritchard et al. (1992) for further details).

The difference between the problem encountered here and that considered by Jean
(1980) and Solonnikov (1980) is that, in the present case, the Dirichlet data are non-
zero at the points where I, meets I, so that compatibility conditions between the
surface slopes and the Dirichlet data must be met at these points. Moreover, this
compatibility constraint will, in general, change with each iteration I'% of the free
surface. Thus, if the slope of the free-surface is specified say at x,, then the depth
{(x,) is unknown and the domain of definition of g (cf. (2.4)) must be scaled
appropriately to accommodate the changing depth with each iteration. If, on the
other hand, the depth at x, is specified, then the slope of I}, is unknown there, and
g must be chosen appropriately to ensure compatibility with the free-surface
condition on I, namely that the component of u normal to I} be zero. For the
present flow it seems natural to represent the inlet and exit flows by specifying
a priori the normal component of g on I, and choosing the tangential component in
such a way that the compatibility with I is satisfied at each stage of the iteration.

The stability of plane Poiseuille-Nusselt flow over an inclined plane (with b =0
everywhere) has been widely studied. Benjamin (1957) and Yih (1963) (and see Yih
1969) showed, on the basis of the linearized equations, that the steady free-surface
flow is unstable when the Reynolds number exceeds 2cota. These analyses were
subsequently amplified by Shih & Shen (1975), who showed that the time-dependent
linear problem is well posed. For Reynolds numbers only slightly in excess of the
critical value the growth rates for this instability can be quite small (cf. §3f below).

(b) Variational (weak) formulations

Several variational formulations exist that are formally equivalent to the
equations ((2.1) and (2.2)) (see Gunzburger 1989; Brenner ef al. 1992). One such
formulation, appropriate for the stress boundary conditions (2.6) and (2.7), is

a(u,v)+d(v,p) = Re(u, u, v)—(}f Jjrvdx, (2.8a)
Q

Phil. Trans. R. Soc. Lond. A (1992)
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Numerical and asymptotic methods for certain viscous free-surface flows 7
and d(u,q) =0, (2.80)
where the forms a(-,,"), ¢(*,*,") and d(-,-) are defined as
2
a(u,v):=2| X eyu)e,v)dx, (2.9)
Qi,j=1
2
c(u,v,w):=— 2 Uy vy w;dx, (2.10)
Qij=1
2
d(v,q):=—| X v ,qdx, (2.11)
Qi=1

and e; denotes the rate-of-strain tensor.

To be more precise about the variational formulation, we must define some
standard spaces (definitions of which are given, for example, in Ciarlet’s (1978) book).
Let L7(Q2) denote the Lebesgue space of rth power integrable functions on £, with
norm denoted by | f|.rq- In the special case r =00, L*(£2) denotes the space of
functions bounded a.e. on 2 and || f|| .=, is the essential supremum of | f| on 2. We
let W¥(£2) denote the Sobolev space of functions whose derivatives of order k, or less,
are in L"(2), with norm denoted by | f |k, Note that Wi(2) = L"(€2) when k = 0,
and the norms are equal as well. For vector-valued functions, we make analogous
definitions. We say that fe W¥(Q) if each component f,, f, of fis in W¥(2) and we
define

I£1l wh@) + = (||f1||rwf(g) + ||f2||rwf(g))1/r, I <r<oo,

I£1I Wk (@) - = max £l wE (@)
i=1,2
For convenience we shall denote the Hilbert spaces W%(2) by H*(£).
Returning to the variational formulation, we define

V:i={veH(Q):v=00n1I, and v-n=0o0nly},

(2.12)

II.= {qeLz(.Q): f g(x)dx = O}.

Q
Then (see, for example, Gunzburger 1989) the solution to (2.1) and (2.2), with
(2.4)-(2.6), satisfies (2.8) for all veV and all gell. Moreover, u and p can be
characterized as solving the following variational problem.

Find u such that u—geV and pe Il such that (2.8) holds for all ve V and all ge I1.

Here and below, it is assumed that the function g used to represent the Dirichlet
boundary data (cf. (2.4)) has been extended appropriately to the domain £.

It is also possible to incorporate the free-surface equation (2.7) into a variational
formulation (see, for example, Saito & Scriven 1981). The curvature « can be written
in terms of the fluid depth, ¢, as

0@\ __ 1 L Y
o) (= 50) = v (Vs ) 213

where 6 denotes the angle made between the tangent to the fluid surface and the
x-axis, and s denotes arc length. Let ve W}(£2) be such that v = 0 on I, and define

Phil. Trans. R. Soc. Lond. A (1992)
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8 W. Q. Pritchard, L. R. Scott and S. J. Tavener

x:=v-n|p. Then, on multiplying (2.7) by xs'(z), integrating over [z,,z5] and
making an integration by parts we find that

& amxw>dx_f%

ACV=8] Vi w?

O zan() "(x )dx,

Za

=J oMy v-nds, (2.14)
Iy

where the expression on the left-hand side is symbolized by 4({, ¥), as indicated. The
latter term of (2.14), representing the normal load acting on the free surface I3, can
be converted to a volumetric term by taking a dot product by a function v
throughout (2.1), integrating the resulting equation over the domain £ and making
an integration by parts. Then, by virtue of the boundary condition (2.6) and the
continuity condition, it follows that

§> X0y ds = a(u, v)+d(v,p)—Rc(u,u,v)+GJ J-vdx,
Q

I'p

which quantity we denote by the form ¢(u, p,v), i.e.
é(u,p,v):= a(u,v)+d(v,p)—Rc(u, u, v)+GJ Jjrodx. (2.15)
Q

Then the free-surface height { can be characterized by the equation

A, x) = (u, p.v), (2.16)

with y:= v-n|, . Note that, provided r < 2, it is possible to have y(z,), x(xg) # 0,
even though v =0 on I3,

In the case that Dlrlchlet conditions are posed at the end points of the free-
boundary, i.e. that {(x,), {(xg) = H, then a natural space for y in (2.16) is Wl(xA,xB)
where the overwritten zero indicates that we consider only the subset of admissible
functions that vanish at x, and xy. In such a setting, (2.16) characterizes a unique
solution ¢ such that {—He W (x,, xy), which property ensures that €2 is a Lipschitz
domain. The right-hand side of (2.16) depends only on the boundary values y of v-n,
in view of (2.13): if w satisfies y = w-n|, then v—weV and

du,p,v—w) = 0.

The complete free-boundary problem (2.1)-(2.7) can now be characterized as being
equivalent to the following variational problem.

Find functions u,p and ¢ with the property that u—geV, pell and {—He
W (2,,2y) such that

P, p,v) =0,
d(u q) =0, (2.17)

A&, x) = ¢(u, p, EY),

for all veV, ge Il and ye Wi(x,,xy). Here Eye H'() denotes any extension of y
satisfying Ex|, =0 and Ey n|, = x.

It is not poss1ble to have an extension operator E that maps W!(x A ) boundedly
to H'(Q2) (see the example given by Saavedra & Scott (1991)). Thus (2.17) must be
modified in some way to make it a rigorous basis for variational approximation

0
0

Phil. Trans. R. Soc. Lond. A (1992)
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Numerical and asymptotic methods for certain viscous free-surface flows 9

Figure 1. A photograph indicating the free-surface profile for flow at a Reynolds number of
approximately 12. The flow is from right to left. The free surface of the liquid in the central portion
of the channel is indicated by the lower edge of the thin line which derives from the meniscus on
the side wall of the channel; the slight thickening of this line on the leeward side of the humps
indicates the presence of some local structure near the side walls of the channel. The distance
between the crests of the two humps in the channel bed is 100 mm.

methods. If we do not require that {e W1, then 2 may cease to be a Lipschitz
domain, leading to considerable technical complications. There is, however, an
extension operator that maps Wi(x,,xy) boundedly to Wi(Q), provided that » < 2.
Thus a possible modification is to replace V and I7 by the spaces

Vii={ve W;2):v=00nI,, v-n=0onlg,}

Hf;:{qey(g): J

Q

g(x) dx = O},

and to change the variational problem as follows.

Find u such that u—ge V®, pell* and {—He W (2, 2g) such that (2.17) holds for
all ve V", for all e II" and for all ye Wi(x,,xy), where 1/7+1/s =1, with » < 2.

A formulation similar to this has been proved to be well posed by Saavedra & Scott
(1991) for a closely related scalar problem.

(c) Lubrication approximation

Shown in figure 1 is a photograph, representative of the experimental situation,
from which it is seen that the flow is typified by a long slender sheet of liquid
distorted slightly by the humps. At the smaller flow rates the liquid depth was of the
order of 3 mm, whereas the peaks of the bumps were separated by 100 mm. This
feature suggests that gradients along the channel should be significantly smaller than
those normal to the channel bed, so that a classical lubrication approximation to the
. flow should work fairly well. It was of interest to us to see over what range of
Reynolds numbers the lubrication approximation would hold up, thereby giving a
feel for the conditions under which higher-order effects would begin to play a role in
the dynamics of the flow. A similar kind of application of lubrication theory to
viscous free-surface flows has been given by Moffatt (1977), Huppert (1982a,b),
Johnson (1988) and Preziosi & Joseph (1988); Bechtel et al. (1988) have shown how
to apply detailed lubrication-type expansions for free jets. Manton (1971) considered
flow in a slowly varying pipe and developed a regular perturbation expansion (in
terms of the maximum rate of change of the pipe diameter) to estimate the influence
of inertial effects on the flow. We use a slightly different approach here.

To quantify the above ideas we introduce the (small) parameter ¢ defined by

e:=sup{|b'(@): x, < v <wg},

where x denotes distance along the plane. Let y be the coordinate normal to the plane
and let u:= (u,v) denote the velocity relative to this coordinate frame. We scale the

Phil. Trans. R. Soc. Lond. A (1992)
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10 W. G. Pritchard, L. R. Scott and S. J. Tavener

x variable, to reflect the slow variation along the plane, by introducing a new
variable X := ex. (It will ensue that, for the experimental situation, the value of ¢
thus defined is about 0.3.) Central to the ideas of lubrication theory is the existence
of a self-similar velocity field in y at each location along the channel. To this effect,
we introduce a similarity variable %: [b(*), {(+)]—[0, 1], where

7= (y—=0())/(&()=0b(")), (2.18)

and it will be convenient to denote the thickness of the film by ¢, so that ¢(X): =
{(X)—b(X). For steady flows the flux ¢ down the plane is given by

¢C) 1
Q:=f u(',y)dy=ft(‘)u(',77)d77. (2.19)
b() 0

Because of the asymptotic structure of the flow far upstream of the humps, it is
convenient to use the flux ¢) and the asymptotic depth / as the basic scales, in which
case we assign ¢ = 1 and H = 1 for the present analysis. Equation (2.19) suggests a
new variable for the velocity along the plane, a kind of depth-averaged velocity,
namely

UX,n):=tX)u(X,n), (2.20)

1
so that f U(-,q)dy = 1. (2.21)

The above definitions can be used to develop an approximation to the Stokes
equations which, formally, is valid to O(e). We shall, however, be interested in
allowing for small inertial corrections which, it is anticipated, will accumulate over
lengths of O((eR)™'). Thus we can expect the self-similar velocity field that arises in
classical lubrication theory to be modified on the slow scale §:= ¢RX(= ¢?Rx). The
introduction of this new variable implies that we should, in fact, consider U =
UX, (X, y,8), X)) and, correspondingly, the thickness ¢t = #(X, £). In terms of these
new independent variables it follows that

/0w = —et { —tUx + Uty + (b'+ 1t y) U, +eR[yU, t,+ Ut,—tU,]}, (2.22)

so that the velocity v normal to the plane can be determined from the divergence
condition (2.2) as

7 (
v(X, 9,8 = et“f {ty U+[b" +2t 4] UZ(X,z,g)}dz—ef Uy(X,2,8)dz+O(e*R). (2.23)
0 0
After an integration by parts, (2.23) resolves as
{
v(X, 7, &) = et [b'(X) +7tx] U(Xﬂ?,ﬁ)—GJ Ux(*,2,")dz+O0(*R).  (2.24)
0

We note, in passing, that v = O(¢) and that, in view of (2.21), v(X, 1, §) = e{ u, to the
same order of approximation, as must be the case.
The y-momentum equation (cf. (2.1)) shows that

Ip/0y+ G cosa = O(e, Re?), (2.25)
from which it follows that

p(X,y,€) = p(X, {(X), §(X)) + ¢ cos a({(X) —y) + O(e, Re?), (2.26)
Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

/\
A

' \

e ol

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
i\

y 9

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Numerical and asymplotic methods for certain viscous free-surface flows 11

where p(X, {(X), §(X)) is the pressure at the free surface. Then, a direct substitution
in the z-momentum equation (cf. (2.1)) shows that

K]
—eRt3t,, U? +eRt—2(UUX + UJ Ux(*,2,°) dz): —epx+172U,, (X, ) +Gsina,
0
(2.27)
which equation holds formally to O(e?, €2R).

The limit equation for B = 0, i.e. the £-independent equation, is thus seen to be
t3X)U,,(X,n) = epy—Gsina, (2.28)

and the limit equation for ¢ = 0, corresponding to flow down a uniform plane, is
3(X) U, (X, 7) = —Gsina. (2.29)

The scaling for the flow is such that {(0) = 1. Equation (2.29) is subject to the no-slip
condition U(X,0) =0 on the plane, and to the condition U (X,1) =0 at the free
surface, corresponding to the shear stress vanishing there, and therefore has the
solution

U0, ) = 3G 2y—9*) sina, (2.30)

and, as a consequence of the flux condition (2.21), it follows that
1 =1IGsina. (2.31)

Equations (2.30) and (2.31) correspond to the classic Poiseuille-Nusselt solution for
flow down a uniform plane.

Returning now to the problem with ¢ non-zero, but keeping kB = 0, we have to find
a velocity field U and a pressure field p satisfying (2.28) together with the appropriate
boundary conditions for the flow. The no-slip condition on the bed of the channel
implies that U(X, 0) = 0. It is easily checked that the zero shear-stress condition (2.6)
at the free surface is satisfied to O(e*) by the specification that U, (X, 1) = 0. The
normal-stress condition (2.7) at the free surface y = {(X) can now be evaluated and
the unknown function p(X, {(X)) fixed. A simple calculation shows that

p(X, ¢X)) = —e®S¢"(X)+ O(e, Se?), (2.32)

and the pressure gradient in (2.28) can now be expressed in terms of the other
variables to yield

U,, (X, ) = X) (—€*Sg"(X) + 3¢ {'(X) cot a—3), (2.33)

which equation is to be solved subject to

1
U-,0)=0, U(,1)=0 and JU(',n)dn=1. (2.34)

0
Equation (2.33) together with (2.34) poses a slightly unusual problem in that, for
a given X, the two-point boundary-value problem for U gives the basic form for the
velocity field, but, because of the unknown surface height ¢, the scale of U has to be
fixed by the continuity condition, expressed by the integral constraint in (2.34). This
is merely an alternative expression of the usual bootstrap argument made in
conventional lubrication theory in a fixed domain, in which the pressure field is
determined from the divergence condition, once the basic velocity field is known.
Indeed, the lubrication approximation embodied in (2.33) and (2.34) shows clearly

Phil. Trans. R. Soc. Lond. A (1992)
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12 W. G. Pritchard, L. R. Scott and S. J. Tavener

the separation of variables X and 7, as used in classical lubrication theory, which
separation is enabled because of the linearity of the momentum equation when R = 0.
Thus, we see from (2.33) and (2.34) that the velocity field U(X, %) is quadratic in
7 and depends on the slow scale X according to

3S¢"(X)— 3¢ &'(X) cot o — 3[L(X) — b(X)]® = — 3. (2.35)

The special case with § =0 yields the standard lubrication approximation (cf.
Huppert 1982 a)
¢'(x) = tan a(1—1/(¢(x) — b(x))?), (2.36)

which we shall henceforth refer to as the LX model.

The asymptotic states far upstream and downstream require, with b = 0, that {— 1
smoothly as -+ c0. Thus, the condition { = 1 can be used to start the integration
of (2.36). This integration must proceed upstream, as the downstream integration
can easily be shown to be unstable. The boundary conditions {(+ o) =1 and
{’(00) = 0 are appropriate for the third-order problem (2.35), in that they provide a
well-posed problem for the linearized version of the equation. In the results to be
described below in §4, numerical solutions to (2.35) were found by using the ordinary
differential equation package coLNEW (see Ascher et af. 1988) which employs a
collocation method and a Newton procedure to solve the two-point boundary value
problem.

We can now address the problem for non-zero, but small, Reynolds numbers as
expressed by (2.27). In view of (2.35) it follows that Uy (X, 9, §) = O(eR), so that the
terms involving Uy on the left-hand side of (2.27) are seen to be of O((¢R)?), and the
equation resolves as

U,,(X,n)+eRt' (X) UP(n) = *(X) (—e*SE"(X) + 3¢ {'(X) cota—3), (2.37)
to be solved subject to the conditions (2.34). Note that in (2.37) we have omitted the
dependence on £ as it does not appear explicitly at this level of approximation.

(i) Solution procedure

To solve (2.37) in the general case with R # 0 we consider the two-point boundary-
value problem for the function W: [0,1]- R, such that

W’ () +rW2() = —f, (2.38a)
subject to W0)=0 and W'()=0, (2.38b)
where

r(X):=eRt'(X), and fX) = BX){SS"(X)—3ccotal (X)+3}.  (2.39)

The difficulty in solving the problem at hand is that of finding particular values for
the functions » and f such that the solution W to (2.38a and b) satisfies the flux
constraint. Suppose, therefore, that » and f take some given values and let W be the
solution to (2.38a, b), with 7, f thus specified. Define a flux Q(r,f) as

Qr.f):= j W(y) dy, (2.40)

and the goal is to find appropriate choices of » and f, for each X, such that ¢ = 1, in
keeping with (2.34). Note that the existence of a solution to (2.38a, b), when r < r,,
for some r, > 0, follows directly from standard variational theory.

Phil. Trans. R. Soc. Lond. A (1992)
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Numerical and asymptotic methods for certain viscous free-surface flows 13

To satisfy the constraint (2.40) it is convenient, by virtue of the implicit function
theorem, to write f as a function of » and determine f(r) such that Q(r, f(r)) = 1. (Such
an elimination is possible up to a value of r of approximately 5.46, at which point our
computations indicate there is a simple turning point in the graph of f(r).) A Taylor
series approximation to f(r) can readily be obtained in the nelghbourhood of r =0.
Note that, at » =0, (2.38a) is linear, so that Q 0,f) = f@(0,1) and, since W(y) =
fn(1—1y), it follows that Q(O 1) =1, and so f(0) = 3. A relatively straightforward

calculation shows f’(0) = —23, and higher-order terms can readily be computed. The
linear approximation to f is thus seen to be
filr) =3—%r. (2.41)

(The linear approximation to f(r) near r = 0 can be determined as follows. Since the
flux @ is a constant, it follows from (2.40) that f*(0) = —@,(0, f(0))/@40, f(0)), so that
f/(0) = —360,(0,f(0)). The determination of ¢, must, of course, be related to the
solution W(n;r,f) of the differential equation (2.38) for given r and f. We therefore
need to consider the limit as »— 0 of the difference

Vepsr.f):={AWn;r.f)=W(n:0,/)1/r},

with f held fixed, which limit, namely V(%;0,f), is given, by use of (2.38), as
the solution of V,(7;0,f) = —W?#;0,f), subject to V(0;0,f) = V,(1;0,f) = 0. Thus,
V(n;0,f) can be found by direct integration, and a further mtegmtlon allows the
desired result to be calculated.)

(i1) 4 hierarchy of models

Although it is feasible to calculate analytically more terms in the Taylor expansion
of f, we have instead chosen to compute (2.38) numerically, using a difference
approximation of the kind attributed variously to Stomer (Whittaker & Robinson
1944) and to Numerov (see Kopal 1955). Consider a uniform mesh of size Ay on
[0,1] and let N:= 1/Ay. We approximate the differential equation (2.38a) by

D, W = (I—5(Ay)*D,) (f+rW?), (2.42)

where D, denotes a centred second-difference operator (i.e. D, corresponds to the
Nx N tri-diagonal matrix with diagonal entries equal to 2/(Ay)? and off-diagonal
entries equal to —1/(A7)? except for the entry (D,)y y_, Which equals —2/(A7)?,
because of the Neumann boundary condition to be satisfied at 5 =1.) The
modification to the identity matrix, I, on the right-hand side of (2.42) makes the
system a fourth-order accurate representation of (2.38).

The integral (2.40) has been discretized using a modification to the trapezoidal rule
based on the Gregory and the Euler-Maclaurin formulae. Thus we replace the
integral by

N
A,'? Z Cq I/Vw
=1
where ¢; = 1, with the exceptions
=% ¢,=2 and cy=1

The above discretization is an approximation to the Euler-Maclaurin formula in
which fourth-order accurate corrections are made at the ends of the interval. At the
left-hand end the derivative-correction term is approximated by a second-order

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 2. (@) A graph of the function f(r) defined by (2.38) together with the first (----), second
(———) and fourth (—-—) order Taylor approximation to fabout (0, 3). Note that f has a turning point
at r & 5.4515 and the continuation of f beyond that turning point is indicated by the dotted curve.
(b) The velocity distribution W(5), showing how it is modified by nonlinear effects. (——), » =0,
f=38; (), r=1241, f=1; (----), r=2.349, f=—1; (+++++" ), r=3.202, f=—3; (), r=
4.043, f = —5.

difference operator, thus retaining fourth-order accuracy, and use is made of the fact
that W(0) = 0. At the right-hand end of the interval, use is made of the boundary
condition W’'(1) = 0.

The discrete approximation to (2.38) and (2.40) can now be expressed as

FW.f.r)=0,

where F represents the following N+ 1 expressions

((1—%@77)202)“102 W—rW? *f)
N—ctW '

Since ¥ depends on N+2 variables, we can choose one of the variables, » say, to be
the independent variable and solve for W and f (e.g. by Newton’s method). Since the
only nonlinearity in F is the quadratic term, W?:= (W?), the jacobian of F is easily
computed as

—1 2 -1 —

JF(W,f) — ((I 12(A77) DZ) tD2 27L(W) E>’ (2.43)

—c 0

where £ denotes the (column) vector of all ones and L(W) denotes the diagonal

matrix whose sth diagonal entry is equal to W,. Note that our scaling makes the
jacobian very nearly symmetrical.

Using these techniques, we have computed f(r) to be shown as in figure 2. Also

shown in figure 2 are some approximations to f obtained from various orders of the

Taylor expansion of f about » = 0. These approximations are defined by f,(r) where
k

fulr) = X fO0), (2.44)
1=0

and we consider only the cases k=0,1,2,4. The coefficients f*(0) have been
determined as: f©(0) = 3,fP(0) =—35,f®(0) % —0.046308, f®(0)~ —0.006087,

Phil. Trans. R. Soc. Lond. A (1992)
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Numerical and asymptotic methods for certain viscous free-surface flows 15

and f®(0) &~ —0.000871, with the latter three coefficients having been found by
numerical computation. Each of the approximations f,(r) defined by (2.44) can be
used to provide a lubrication model in its own right. These take the form

388" (X)—3ef (X) cot oo — f.(7) [E(X) —b(X)] 3 = —3. (2.45)

We have restricted our numerical experiments to the cases k£ =0 (the improved
lubrication approximation (2.35)), k =1, k = 2, k = 4 and the exact representation
of f, which models we shall refer to respectively as LO, L1, L2, L4 and Loo.
Interesting differences have been found in the computations described in §4 between
the solutions of the various models defined by (2.45) and the finite element
computations based on the complete problem.

The differential equation (2.45) has been solved using the aforementioned package
COLNEW, subject to the boundary conditions {(+ o) =1,{(—o0)=0. It was,
however, found that solutions to the models L1, L2, L.4 and Loo were not possible
above a certain value of R. The reasons for this are not completely understood by us,
but an indication of why there might not be a solution as R increases is given by
rewriting (2.45) in terms of the film thickness ¢(X). Thus, for the case k = 1, we find
that (2.45) takes the form

e3St"(X)—e(3 cot o — 32 Bt~3(X)) t(X) = —3+3eb'(X) cotb e —€3Sb™(X), (2.46)

for which {(+00) =1 and ¢'(—o0) = 0, and note that b and all its derivatives vanish
at +co. (Because the length scale used here is based on the upstream depth, the
function b and the variable X depend implicitly on the flow rate and hence on R.
Thus, the term involving b"” in (2.46) depends implicitly on R, whereas the other terms
on the right-hand side of (2.46) are independent of R.) When S = 0, (2.46) reduces to
a first-order equation and we see that ¢ will fail to be differentiable should the
thickness ¢ reach the critical value

t* = (18R /35 cot ). (2.47)

It has been found numerically, when simulating the experimental conditions to be
described below, that smooth solutions to (2.45), for the case with S = 0, were not
possible for values of R exceeding 5.1, 5.1, 5.1, and 2.5 for the respective models L1,
12, L4, and Loo. In these experiments, the breakdown of the L.1-model occurred at
a film thickness in very close agreement with the value 0.336 for f given by (2.47).

With S not equal to zero (in fact S &~ 18R7% in our experiments), the range of
Reynolds numbers over which smooth solutions were obtainable was increased to
15, 9.4, 7.7, 8.0, for the respective models. The maximum values of r, and the
corresponding value of f, associated with these critical Reynolds numbers were: 18.5,
—25.5 (model Li1); 6.90, —9.84 (model 1.2); 4.02, —5.34 (model L.4) and 4.31, —5.90
(model Lioo).

Some examples are given in figure 2b of the modification induced by the nonlinear
term e¢Rt’U? to the basic Poiseuille-Nusselt profile. Note that the curve for W at » =
4.043 shown here was near the largest value of r for which solutions to (2.45) were
obtainable for the L.co model.

(d) Numerical algorithms

Discrete methods for the Navier—Stokes problem (2.1) and (2.2), subject to
boundary conditions (2.4)—(2.6) on a fixed domain £, can be obtained through the
variational formulation (2.8) by choosing discrete subspaces V, = V and IT, < II,

Phil. Trans. R. Soc. Lond. A (1992)
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16 W. G. Pritchard, L. R. Scott and S. J. Tavener

where the parameter 4 denotes the accuracy of the discretization. Assume, for the
time being, that 2 has a polygonal boundary. Two pairs of spaces that are known
theoretically (see Brezzi & Falk 1992) to lead to convergent methods are as follows.
Suppose that a triangulation, J,, of the domain £ is given. Define % (see (4.2) below)
to be the square root of the ratio of the maximum area of any triangle in 7, to the
area of 22, and thus 0 < £ < 1. We shall assume that the points of intersection of the
domains I and I are vertices in . Let 2, denote polynomials of degree n or less
in two variables. Then define

Vyi={veV: (v,v,),€ %, V1€T,}, (2.48v)
1,:= {ge T 0 ("Q): gl e ANTe T, (2.48p)

For piecewise polynomials, the condition veV is equivalent to the condition that
each component, v, be continuous. However, the restriction gell places no
continuity restriction on a piecewise polynomial, ¢. Specifically, the method of this
class to be used in the numerical computations is the one first introduced by Taylor
& Hood (1973) for which the velocity field is comprised of polynomials that are
piecewise quadratic on each triangle and have C°-continuity on the domain Q; the
pressure field is comprised of functions that are piecewise linear on each triangle and
have (-continuity on 2. We refer to this method as the QuT method, denoting the
quadratic and linear approximations to the velocity and pressure fields on each
triangle.

Similarly, let &, denote a subdivision of £ into quadrilaterals. We again define A
to be the square root of the ratio of the maximum area of any quadrilateral in the
subdivision to the area of £2, and let 2, denote biquadratic polynomials (products of
polynomials of degree 2 or less in each variable separately). For a given quadrilateral,
weF,, let f_ denote a bilinear mapping of a translate of [0,1]x[0, 1] to w. Then

define V,i={0eV: 1,0 B lo1xion €%, VoeF, and i=1,2}, (2.49v)
I, .= {qell: q|,e P VweF,}. (2.49p)

The specific method of this class to be used here is the one analysed by Bercovier &
Engleman (1979). In this case the velocity field is comprised of biquadratic
polynomials on each quadrilateral and which have C°-continuity on £2; the pressure
field is comprised of polynomials that are piecewise linear on each quadrilateral but
do not have any continuity constraints between quadrilaterals. We refer to this
method as the bqLQ method, denoting the biquadratic and linear approximations on
each quadrilateral.

Should the Dirichlet data, g, not be representable by a piecewise polynomial of the
appropriate degree, then typically the boundary data g are represented by an
interpolant, .#, g, as shown, for example, in Ciarlet (1978). Here we take .#, to be the
standard Lagrange interpolant.

When the continuous problem has a unique solution it is known (see Girault &
Raviart 1986 ; Brezzi & Falk 1991) that, using either the pair of spaces (2.48) or the
pair (2.49), the following discrete problem has a unique solution, for A sufficiently
small.

Find u,, such that u,—.#, geV,, and p, €ll, such that

a(u,, v)+d(v, p,) =Rc(uh,uh,v)+(}’f jrvdx, Yvel,
Q
d(u,,q) =0, Vqell,.

Phil. Trans. R. Soc. Lond. A (1992)
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Numerical eind asymptotic methods for certain viscous free-surface flows 17

Then ||u"uh||H1(g)+ Hp‘“ph”ﬁ(g) < Chz(“””ﬂ‘*(g) + ||p”H2(g))a (2.51)

where C'is a constant which depends only on @, R, @ and the smallest angle made
by any pair of adjacent edges in 7, or &,. Estimates based on closely related scalar
elliptic problems (see, for example, Ciarlet 1978; Duran et al. 1988) suggest that it
should be possible in the present case to show that, not only do the discrete schemes
satisfy (2.51), but that the errors also satisfy

“u“‘uh”L’(Q)+h”p_thL’(Q) < CR(||ull wiey T ”I’“u",—'(s_»)» I<r<oo. (2.52)

(i) Procedures for testing numerical codes

When a complex computer code is to be used in a scientific investigation, especially
one not written by the users of the code, it is crucial that a careful assessment be
made of it to determine whether the intended algorithms have been correctly
implemented and to ascertain the limitations of the code. It is not usually a
completely straightforward exercise to assess a practical code in terms of an estimate
such as that given in (2.52). There are several reasons for this: usually it is not easy
to come up with an exact solution {u, p} on a relatively complicated domain; or, even
if an exact solution is known (or is computed by some auxiliary means, as is done
subsequently for the Jeffery—Hamel flow), it is not feasible to compute exactly the
Lebesgue norms, L"(£2), of the errors, unless the exact solution is particularly simple.
This can be avoided by substituting for the exact solution an interpolant. (This
technique also simplifies comparison with experimental data as well.) For the spaces
(2.48) and (2.49), the standard Lagrange interpolant (see Ciarlet 1978) satisfies

||"*fh"“1](g)+k|lp—fhp||ﬂ(9) < CR(||ull wio T [l WE(Q))v I <7r<oo. (2.53)

From the triangle inequality, the validity of an estimate of the form (2.52) would
then imply that

[ Fhu—uy @y + PN I p—Dull 7@y < CRP(ull wao T Iplwig), 1<r<o. (2.54)

While it is possible to compute the norms on the left-hand side of (2.54) for some
values of 7, it is useful to make a further simplification as follows. For an element 7
of @, let X denote the appropriate Lagrange interpolation points for a given space
of polynomials Z(= #,, %, or 9, in the present context). Let

H (v):= 11 X v(x), (2.55)

xel,

where |7| denotes the area of 7. Then there is a positive constant, €, depending only
on the smallest angle in 7 such that

& e <o < ¢ [ 1o
for every ve . Thus, if we define

1/r
Bo)i=( H,<|vr>) , (2.56)

€Dy,

(with the obvious corresponding extension for vector-valued functions), it follows
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that there is a constant, €, depending only on the smallest angle in &, such that, for
1<r<o0,
(1/0) ”v"L'(Q) < E,(v) < O””"L’(g)» (2.57)

for all piecewise-polynomial functions under consideration. A similar argument
extends the validity of (2.57) to the case » =c0, where £ _(v) is defined to be the
maximum of |¢| at all the Lagrange 1nterpolat10n points, 2, for every 7€%,. The
validity of (2.52) would then imply that

E.(Su—uw,)+hE (S, p—p,) < OW(||lul whey T 2l W?(Q)), I<r<o. (2.58)

If an exact solution (u, p) is known, it is a relatively simple matter to compute the
expression on the left-hand side of (2.58) to determine whether or not the functions
provided by a code satisfy (2.58) asymptotically as the mesh size, 4, is reduced. Tests
of this sort will be presented subsequently.

(ii) Variational formulation of the free-boundary problem

A variational formulation, based on (2.17), for the free-boundary problem
(2.1)~(2.7) requires the introduction of a space S,, W L (x s, xg) for the approximation
of {. A natural space to complement (2.48) and (2.49) is the set of all piecewise-
quadratic functions on a subdivision of [x,,xg]. It is convenient for computational
purposes to link the meshes used for the boundary approximation space, §,, and the
mesh, Z,, used for the interior approximation spaces, (2.48) or (2.49). Moreover, the
interior mesh must be allowed to depend on the discrete approximation of the free-
boundary, &,. This can be done in the following way. Suppose that we start with a
fixed mesh, 2%, on the domain £° corresponding to some initial guess for the free
surface, £’ say. We require that the vertices of the mesh for §, coincide with the
x-coordinates for the vertices of &, on the prescribed initial surface at y = £°. In the
simplest case, we define a new mesh, @%, depending on {8, through the coordinate

mapping x> x)/H)y (2.59)
which simply stretches or contracts the mesh in the vertical direction to match the
required surface height, {(x). More complicated mappings are also possible, as will be
discussed subsequently.

Using a mapping such as that introduced in (2.59), it is possible (see Ciarlet 1978)
to introduce new discrete spaces V$ and II§ as isoparametric images of V, and 17,
defined on Z9. The discrete approximation for the problem defined by (2.1)—(2.7) is
then:

find ¢, —HeS,,u, such that u,— ., ge V{» and p, € IT such that
¢(uhaph’ U) = 07
d(u,,q) =0, (2.60)
A&, x) = bluy, 2y, Ey x),

for all ve V§, ge Il and y€eSs,,.

Here E,, x denotes any extension of y such that E, y-n|, = y. As in the continuous
case, the solutlon to (2.60) is independent of the ch01ce of the extension.

There is no error analysis currently available for (2.60). However, once the solution

¢, is known, the first two equations of (2.60) imply that (u,, p) may be thought of as
solving a fixed-domain problem on the domain, £2,. Should this domain be close to
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2, we can apply the triangle inequality together with (2.51), to deduce the accuracy
of the method. Note that the estimate (2.51) has not been proved for isoparametric
elements based on (2.48) and (2.49), but results obtained from the closely related
scalar case (Ciarlet 1978) suggest that it is not unreasonable to presume the validity
of (2.51) as a working hypothesis. Since the free-surface is here approximated by
piecewise quadratic functions, it is therefore expected that

1= &nll iy < CP* Ll wae), 1 <7 <00, (2.61)

(iii) Solution of the nonlinear equations

The set of equations (2.60) represent N:= dim V, +dim /7, + dim S,, equations in N
unknowns. They can be written in a more familiar form simply by replacing v, q, y by
members of bases of the spaces V,, IT,,, S,,, for which the resultant system of equations
may be solved by a variety of techniques, including Newton’s method. We also note
that there is a special fixed-point iteration similar to the theoretical argument used
by Jean (1980) and by Solonnikov (1980) in which the first two equations of (2.60)
are solved for fixed {,, and then the third equation is solved using the newly
computed u,, p, to provide an updated ¢,, and the process is repeated. For R not too
large and S not too small, this essentially decouples the free-boundary problem into
two (nearly) linear problems on fixed domains.

When a range of values of R is to be analysed, it is natural to use a ‘continuation’
method, in which previous solutions at smaller values of B are used as the first guess
(including the initial guess for the domain) at the beginning of an iterative technique
used to solve (2.60). Another, more unusual, technique for solving such problems is
to introduce an artificial parameter, 0 < w < 1, and solve with a bed of elevation
wb(x), beginning at w = 0 for which the solution of the free-surface problem is known
explicitly, and continuing until w = 1 is reached. As will be discussed subsequently,
both continuation techniques were needed to compute the solution to the free-
boundary problem corresponding to the physical experiments.

(e) Implementation of numerical methods

All the numerical solutions described herein to the problem posed by (2.1)-(2.7)
were obtained by using the commercially available, finite-element package FipDAP
(available from Fluid Dynamics International Inc., and see Engelman (1982)). This
code offers a wide range of options, especially with regard to the choice of elements
available for the representation of the dependent variables. We have, however,
chosen to work with two of the more commonly used methods, for which the
theoretical underpinning is as described above in §2d.

With the implementation made in FIDAP, the six nodes representing the velocity
field in the QuT method (cf. §2d) are located at the triangle vertices and the triangle
edge midpoints; the nodes for the (C°) pressure field are located at the triangle
vertices. The evaluation of the coefficients in the finite-element equations is effected
by a seven-point numerical quadrature scheme. For the bqQLq method, the degrees of
freedom associated with the (biquadratic) velocity approximation are located at the
corners and edge mid-points and at the barycentre of the quadrilateral ; the three
degrees of freedom associated with the discontinuous, linear pressure approximation
are fixed at the barycentre of the quadrilateral. Gaussian formulae are used to
evaluate the coefficients associated with the finite-element equations. Isoparametric
elements are used in both cases. Note that, in the present computations, the pressure
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is solved for directly as one of the independent variables: FipaP allows for the
possibility of resolving the divergence constraint by the use of a penalty formulation,
but the method does not work well for free-surface flows.

(i) Linear algebra

The linear system to be solved is not symmetric, but it is sparse and banded. The
solution is performed in FIDAP by direct gaussian elimination without pivoting and,
should a pivot smaller than 107 be encountered, it is simply replaced by 1078, Small
pivots were a very common occurrence in our computations and, since the procedure
used by FIDAP solves a linear system modified from the original, some understanding
of the effect of replacing pivots is needed. (We report below on some convergence
studies in which the system was modified in this way.) The global matrix is stored
in skyline form (see Hasbani & Engelman 1979) and the program has an option
(invoked by calling RENUMBER (PROFILE) in the code) for nodal renumbering to
minimize the number of storage locations in the skyline envelope. Use of the
renumbering procedure gave large reductions in the solution times.

(ii) Nonlinear algebra

For the solution of steady free-surface flows FIDAP uses a Newton iteration scheme
proposed by Saito & Scriven (1981). To provide some control on the way the free
surface is adjusted at each stage of the iteration, and thereby help avoid possible
unwanted singular or nearly singular jacobian matrices, the nodel points used in the
discretization of the free surface are constrained to move along so-called spines (cf.
§4 a). These spines are a collection of straight lines which pierce the ‘free surface’ and
which are assumed to intersect only outside the ‘flow’ domain, at each stage of the
iteration. Thus the selection of the spines can be a matter for considerable care.
Certain nodal points in the mesh are constrained to lie on the spines and are moved
along the spines in proportion to the adjustment of the free surface. Nodes in between
are adjusted by an interpolation procedure. Through the use of such spines, Saito &
Scriven were able to calculate the jacobian for a class of free-surface flows of
Navier—Stokes fluids, and showed computationally that the Newton iteration based
on this jacobian did indeed converge at second order, as expected. In the calculations
to be described below, the choice of the spines was relatively straightforward and is
given in §4.

In our computations a number of strategies were used to provide the initial guess
for the Newton iteration. One method used continuation in the Reynolds number,
starting from the solution at R = 0. The lubrication approximation (see §2c¢) was
very helpful in providing an initial approximation for the free surface profile at small
values of B, and this could be used to initiate the Newton method at Reynolds
numbers up to about 5. Another method we used was to use a continuation method,
starting from the flow down a uniform plane, and then gradually to increase the size
of the perturbations to the channel bed until the solution with the desired bed profile
had been achieved. The radius of convergence for the Newton iteration seemed to
become quite small at values of R in excess of 20, and we were unable to find a
solution at some of the larger Reynolds numbers obtaining in the physical
experiments.

The stopping procedure in ripap for the Newton iteration is based on the
satisfaction of a pair of convergence criteria. The first of these looks at successive
iterates u; of the solution vector u being sought such that the system of equations

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

A

R
\\ \\
P

/

|\
L
Y

A

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY /3%

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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R(u) = 0, for which R(u,) is referred to as the residual vector at the ¢th iteration.
Thus it is required that the relative difference between successive iterates should
become smaller than a specified value ¢,, i.e. that

llet,— w11/ llw]| <€y,

where || - || denotes the maximum euclidean norm of the appropriate vector field. The
second criterion is that the residual vector be reduced by an amount ¢, such that

I R(u) /1 R(up)|| < €,

where u, denotes the initial guess. Typically we set ¢, & 107 and ¢, & 107° for the
comparisons with the experimental data.

(iii) Boundary conditions

The boundary conditions relating to the flow domain corresponding to the
experimental situation are discussed in some detail in §2a. A photograph of the flow
domain at R =~ 12 is shown above in figure 1. Dirichlet conditions on the velocity field
were imposed on the channel bed (specifically the no-slip condition) and at the
upstream and downstream locations x, and xy, at which stations the heights H of the
streams were also specified, as discussed in §§2a and b. In principle the surface slopes
at x, and xy will adjust to the global flow constraints, in which case some tangential
velocity components are needed to ensure kinematic compatibility of the flow field.
Unfortunately it is not possible in FIDAP to meet these constraints but, because the
flow had effectively achieved its uniform asymptotic state at both the upstream and
the downstream extremities of the computational domain, these potential incom-
patibilities proved to cause no problems at all in our calculations. Through the use
of the formulation given in §2b, the shear-stress condition (2.6) at the free surface
resolves as a natural boundary condition, and satisfaction of the normal-stress
condition (2.7) is an end product of the Newton iteration.

3. Experimental apparatus and technique
(@) Experimental apparatus

The apparatus used for the present experiments was basically the same as that
used in the experiments described by Pritchard (1986), to which paper reference
should be made for further descriptions of the equipment. The central part of the
apparatus was an open channel of width 127 mm and depth 74.5 mm, sloping at an
angle of 0.0735 rad to the horizontal ; it was 1.20 m long. At the upstream end of the
channel was an inlet reservoir from which the liquid (an oil) poured into the channel
and at the downstream end was a receiving reservoir. The channel was constructed
around a length of aluminium channel, inverted and to which were bolted lengths
of 10 mm thick acrylic sheet to form the sidewalls of the channel. A schematic
representation of the apparatus is shown in figure 3.

A centrifugal pump, driven by a speed-controlled motor, was used to return the oil
through a heat-exchange unit to the upstream reservoir. The purpose of the heat-
exchange unit was to maintain the oil at a stable working temperature, usually
within +0.02 K, during the course of an experiment, and the controlled pump speed
(nominally 1 part in 10%) ensured that the flow rate was held nearly constant during
a given experiment.

A mercury bulb thermometer was located in the upstream reservoir, as indicated
in figure 3. The oil temperature, which was noted at frequent intervals, was measured
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Figure 3. Schematic layout of the apparatus.

to within an uncertainty of approximately +0.01 K. The temperature of the
laboratory was maintained at (214+0.5) °C and the oil temperature was usually
stabilized at about 21 °C, however, for each individual experiment, the recorded
temperature was used in order to specify accurately the viscosity of the oil.

The main unit rested on feet located under each of the reservoirs. Adjustment
screws in the feet were carefully set to ensure that the bed of the channel was nearly
horizontal in a direction normal to the main axis of the channel (i.e. in a direction
normal to the sidewalls). The auxiliary reservoir was used to maintain a constant
depth in the downstream reservoir when the flow rate was changed.

(b) The chamnel bed

A relatively uniform channel bed was obtained by glueing sections of duralumin
plate onto the aforementioned length of aluminium channel. These sections were of
uniform thickness except for one which was built up with two approximately
sinusoidal ridges that spanned the width of the channel, and were located as shown
in figure 3. The ridges were made from an epoxy resin, of the kind used for building
up car bodies, bonded firmly onto one of the duralumin sheets. Since it was
important that the ridges be independent of the cross-channel coordinate a staircase
profile of the desired shape was milled into the resin and the staircase was smoothed
off with a new coating of epoxy and then polished. Finally the plate was machined
to width to fit snugly into the channel. In this way a nice smooth profile was obtained
which, most importantly, was uniform across the channel to a very good accuracy.
The gaps between the sheets of duralumin used to form the false bed of the channel
were also filled with epoxy and rubbed smooth.

With the channel bed properly in place, the channel was located firmly on its
attachments and the desired slope for the channel bed was fixed. The bed was
brought to the horizontal in the cross-channel direction near its upper and lower ends
by adjustments of the heights of the feet on which the channel rested. Measurements
were then made, relative to the free surface of a stationary liquid, at a number of
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locations along the channel to check that the bed was truly horizontal across the
channel. The worst cross-channel twist was approximately 1 part in 1000, which was
less than 1% of the down-channel slope.

As indicated in figure 3, the channel bed consisted of an initial plane section of
approximately 460 mm, followed by the two approximately sinusoidal ridges which
stretched a further 200 mm downstream, and finished with another plane stretch
extending a further 650 mm downstream. The plates used for the upstream and
downstream sections of the bed were nearly planar, the upper surface of each
deviating from a plane by less than 0.02 mm. The joints between these plates were,
as described above, filled with epoxy and polished smooth; there were, however,
small disparities in height across the joints of approximately 0.05 mm. One joint was
located approximately 115 mm upstream of the crest of the first ridge, the second
joint was approximately 85 mm downstream from the crest of the second ridge, and
the third joint was a further 300 mm downstream. These small jumps seemed not to
be important to the general structure of the flow field.

The profile of the channel bed, measured along the centreline of the channel, is
given in figure 4a. For this figure distances, &, along the channel have been scaled by
the distance D (= 100.0 mm) between the two crests of the ridges, and distances, 7,
normal to the flat sections of the channel have been scaled by the maximum height,
b, (= 10.0 mm) of the ridges. The origin for the coordinate system shown in figure 4a
is a preassigned point on the bed of the channel at a location near the inlet of the
channel, and the coordinate direction along the channel is that defined by a line
chosen to give the best mean representation of the measurements along the centreline
in the flat portions of the channel. (The way this plane was chosen is described
below.) Denote the coordinates along and normal to the channel respectively by
(,9):= (&/D,§/b,), and let the height of the channel bed above the line ¥ = 0 be
given by b(%). The measured values are indicated by the small ellipses, and the curve
that interpolates these data points is a least-squares spline approximation. The
locations of the knots used for the (cubic) spline approximation are indicated in
figure 4b which also shows the difference between the interpolating function and the
measured bed profile. Thus, it is seen that the error in using the indicated interpolation
to represent the bed profile is no more than about 0.8% (or about 0.08 mm) of the
height of the ridges. We have used this interpolating function to define the lower
boundary of the computational domain. An indication of the smoothness of the spline
approximation is given in figure 4¢ and d where the first and second derivatives of
the spline are shown. These graphs illustrate how well the approximations indicated
in figure 4a¢ and b were achieved without having to introduce unduly many
oscillatory components to the spline. Such components would, for example, arise if
too many knots had been used to make the spline conform closely to the original
data.

As is evident from figure 4a, the channel along the centreline was, indeed, nearly
flat upstream and downstream of the ridges. Thus we have used the data lying in the
intervals [ —0.70,3.10] and [5.40,7.00] of the downstream coordinate z to define a
plane which can be used as a reference surface for the channel bed. (This plane was
taken to be horizontal in the cross-channel direction.) A least-squares linear
regression was fitted to the data in these intervals and was found to give a very good
representation of the flat portions of the bed, except for the region near the very
downstream end of the channel where, it transpires, the final duralumin plate had
been installed at a small angle relative to the rest of the bed. The maximum deviation
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(@)
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Figure 4. Measured profile of the channel bed. (¢) o, The measured profile ; the approximating curve
is a spline interpolation of the data; (b) the difference between the spline interpolation in (@) and
the measurements. o, The location of the knots for the spline; (c) the first derivative of the
interpolating spline; (d) the second derivative of the interpolating spline.

of the supposedly flat portion of the channel from the reference plane thus chosen was
0.25 mm which, as seen in figure 5, was at the very downstream end of the channel.
Shown in this figure are the reference plane for the channel bed, the measurements
of the centreline bed height above the reference plane, and the spline representation
of the data. Note that, in figure 5, heights above the channel bed have been
considerably magnified, and distances along the channel have been considerably
foreshortened. The slight misalignment of the very downstream part of the channel
bed does not appear to have led to any difficulties in interpreting the experimental
results.
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Figure 5. The data of figure 4a redrawn together with the plane used to represent the flat
portions of the channel.

The reference plane, as defined above, gives the mean slope of the flat portion of
the channel to the horizontal. This angle was determined to be 0.0735 rad, as
indicated in §3a.

(¢) The working liguid

The liquid used in these measurements was a commercial vegetable oil of the kind
used in the catering industry. This oil was a blended mixture of a variety of vegetable
oils, but is believed to have been derived predominantly from oilseed rape. One minor
inconvenience of this oil was that its mechanical properties, in particular its shear
viscosity, showed small changes with use. This kind of oil has been used in our
laboratory for several years and it has been found that, when in regular use, its shear
viscosity changes by roughly 0.04% per day. Thus, the viscosity of the oil was
monitored on a regular basis throughout the course of the experiment. It is believed
(see Pritchard 1986) that any non-newtonian properties of this material were of
negligible importance in the present experiments, and that the shear viscosity was
independent of the shear rate over the range of operating conditions used in the
experiments.

Near the usual operating temperatures for the present experiments the (shear)
viscosity of the oil was found to change by approximately 3.7% per degree kelvin,
the viscosity decreasing with increasing temperature. Therefore, to be able to specify
the viscosity of the oil in a given experiment, it was important not only to monitor
carefully the physical effects of ageing, but also to determine accurately the operating
temperature for each experiment.

Relative changes in the viscosity of the oil were monitored by measuring the time
for a given quantity of fluid to discharge through a capillary viscometer. This time
was determined to a reproducible accuracy of better than 0.1% and so relative
changes of the viscosity could be tracked very closely. The absolute viscosity was
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determined by comparison of the viscosity of the oil with that of distilled water, the
value of which was taken from international standards. The kinematical viscosity of
the oil was approximately 0.8 stokes (or 80 x 107® m? s7*), which is roughly 80 times
the viscosity of water at the same temperature. The actual viscosity for a given
experiment was known to within 1 %.

The surface tension of the oil was determined in two ways. The force exerted on
a thin plate, whose edge had been brought down to touch the surface of the oil, was
measured and this quantity was used to estimate the surface tension. (The contact
angle of the oil with the plate surface was observed to be very small and so, for these
estimates a contact angle of zero was assumed.) The second method consisted of
determining the force acting on a circular ring of wire drawn out through the liquid
surface. Initially the experimental procedures were established by determining the
surface tension of highly purified water.

From these two kinds of measurements the surface tension of the oil, determined
at a temperature of 21 °C, was estimated to be 33.0+1.0 dyn em™.

The density of the oil was measured by using a relative density bottle and was
estimated to be 0.922 g em™? at a temperature of 21 °C.

(d) Depth measurements

All measurements of the free surface location were made by carefully lowering a
pointer until it just broke the free surface of the liquid. The pointer gauge was fixed
into a piece of brass rod on the upper end of which rested the leg of a dial gauge.
Detection of the moment the needle broke the free surface was easily recognizable
because of surface tension immediately pulling the liquid up the shaft of the needle;
however, because the working liquid was, in this case, a very poor electrical
conductor, care had to be taken that no charge built up on the needle as this
could also cause the liquid surface to dimple before the needle point had actually
reached the surface. With reasonable care it was possible to reproduce the depth
measurements to within +0.01 mm. The maps of the channel bed (cf. §3b) were also
made by lowering a needle until it just met the surface.

(e) Spectfication of the upstream and downstream boundary data

The asymptotic velocity profiles upstream and downstream have been determined
from measurements of the depth of liquid flowing down the uniform sections of the
channel.

Consider a viscous fluid flowing, under the action of gravity, down a plane surface
inclined at an angle o to the horizontal. Suppose that the thickness of the sheet of
liquid on the plane surface is H and that § measures the normal distance above the
plane. Then the Poiseuille velocity distribution d(§) for steady flow down the plane

is
. gH’sina AN _g]_z
# = o (7)) | G0

where v is the kinematical viscosity of the fluid and ¢ is the gravity constant.
Corresponding to this flow, the volume flux, ¢, per unit width is

Q = (gH?sina)/3v, (3.2)

and the velocity at the free surface is equal to (3Q/H). Based on the analysis of
Abergel & Bona (1992), we know that the flow fields over the uniform parts of the
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Numerical and asymptotic methods for certain viscous free-surface flows 27

channel are close to their asymptotic states far away from the perturbed part of the
channel bed, so the depth in these regions can provide a convenient means of
specifying the basic flow parameters for the experiment, in particular the inflow and
outflow boundary conditions for the numerical solutions. That the above distribution
(3.1) did indeed give a good description of the flow in the channel was checked by
direct measurements of the surface speed which agreed, over the complete range of
operating conditions, to within 1.5% of that predicted from (3.1) by using the
empirically determined values of H,a and v. Also, above the uniform sections of the
channel, the sheets of liquid were found to be very nearly of uniform thickness, at
least in the regions away from the ridges, indicating that the film had achieved an
equilibrium between the gravitational acceleration and the viscous stresses, in
agreement with the theoretical discussion given in §§1 and 2a.

As indicated above, the depth measurements were accurate to within approxi-
mately +0.01 mm. Thus, for a depth of 1 mm, corresponding roughly to the
smallest flow rate used here, the accuracy of the determination of H corresponds to
a 3% error in the specification of @ (cf. (3.2)). At the larger flow rates the upstream
depth was of the order of 10 mm, so, under these conditions, the relative error in
determining ¢ from depth measurements was quite small.

(f) The experiment

The procedure adopted in these experiments was as follows. The desired flow rate
was established and the oil was allowed to equilibrate to the control temperature.
Measurements of the free surface height were then made along the centreline of the
channel using the pointer gauge described above in §3d. The position along the
channel was established by reference to an engraved steel rule glued to the side wall
of the channel. Thus, by aligning the pointer gauge with one of the graduations on
the rule, the down-channel location, &, was known to within approximately +0.1 mm.
Measurements were also made at potentially critical locations of variations of the
free-surface height across the channel. Three-dimensional structure across the
channel emanated most noticeably from the side walls of the channel where the fluid
passed over the ridges, and became quite pronounced at the largest flow rate used in
the experiments. Depth measurements at a specific location were made repeatedly
throughout the experiment to ensure that the flow rate remained nearly constant.
The temperature of the fluid was also carefully monitored throughout the experiment
to ensure that it was controlled to within +0.2 K.

Care was taken throughout the experiment to look for possible unsteadiness of the
flow. One reason for this precaution was the potentiality of a long-wave instability
of the free surface when the Reynolds number exceeds a critical value R, = 2cota
(Yih 1969, p. 502). In the present experiments R, = 11.3, but there was no indication
from the observations that this potential source of instability was significantly
important here, even at Reynolds numbers well above the critical value. However,
at the very largest Reynolds numbers used, some unsteadiness was observed in the
zone between the two ridges. More detailed discussion of this point is given below in
the description of the experimental results.

One curious feature of the flow, which is not understood by us, was the
development of small surface patches mainly originating near the upstream end of
the channel. These patches, which grew to a diameter of about 15 mm, were
reminiscent of the spreading of a small amount of a contaminant on the surface of
a liquid. Degassing the oil did not have any effect on the appearance of the patches.
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4. Numerical experiments

Some experiments were carried out to check the performance of the numerical code
in predicting the exact solution of certain problems. Such tests are usually very
helpful on several counts. In particular, they indicate whether or not the
implementation has the expected convergence properties as the mesh is refined, and
they can also give a good indication of the mesh refinements needed to achieve a
desired accuracy. Another benefit of these kinds of tests is that appropriate choices
for parameters associated with the convergence of iterative parts of the scheme (cf.
§2e(ii) in the present context) can be established. We have made numerical
experiments of this kind on two particular problems. The first, made in a fixed
domain, provides a test of the basic Navier—Stokes solver. The second problem was
used to test the free-surface aspects of the solution procedure.

(a) Convergence studies

(i) Jeffrey—Hamel flows

Convergence studies in a fixed domain have been made using the well-known
Jeffrey-Hamel solution in two dimensions for steady flow into a converging duct
(Landau & Lifschitz 1959, p. 81). This flow provides a similarity solution to the
Navier—Stokes equation in which the velocity field, in cylindrical polar coordinates
(r,0), is assumed to be of the form (6vf(0)/r,0) suggested by the continuity equation,
where f is a function only of €, and v is the kinematical viscosity of the fluid. We
suppose that the flow is confined to the wedge 0 < 6 < a, with « less than 3r. The
assumption of such a flow structure leads to a nonlinear ordinary differential
equation for f. The solution of this ordinary differential equation then permits a
definition for the Reynolds number, B, which we write as

R::ﬁrf(e)de. (4.1)

In the computational tests to be described we restrict the flow domain to a
bounded subset of the wedge, excluding a neighbourhood of the origin. For the most
part we have used a flow domain bounded on the left by a plane passing through the
point (r;,0) orthogonal to the wall of the wedge at that point, and similarly on the
right by a plane passing through the point (r,,0), examples of which are given in
figure 6. Dirichlet data for the velocity fields on these two planes were determined
from the exact solution which, together with the no-slip boundary condition on the
walls of the wedge, provide a well-posed problem for the Navier—Stokes equation, for
which problem a solution is the self-same Jeffrey—-Hamel flow. As indicated above the
exact solution is given only in terms of an ordinary differential equation and
therefore has to be found numerically. This was done by means of a (second-order)
finite-difference scheme, and utilizing a Newton iteration to resolve the nonlinear
problem. To define the pressure field uniquely, we have determined the arbitrary
constant associated with the pressure solution such that the pressure has a mean
value of zero when integrated over the flow domain, in keeping with the definition
(2.12) for the pressure space I1.

Convergence studies have been made for both the implementations QLT and bqQLQ
defined in §2d (and see §2¢). A sequence of triangulations, geometrically similar to
the one shown in figure 6a, was used for the convergence study of the Qur method.
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Figure 7
Figure 6 (@) )
(@) (®)

Figure 6. Examples of the triangulations used for the convergence studies based on Jeffrey—Hamel
flow in a wedge. (@) The mesh used for the main study; (b) a distorted mesh. The domain is bounded
on the left by planes through the points (1, 0) and (2, 0) respectively; the wedge has angle o« = 1.

Figure 7. The pressure fields at R = 0.082 generated by the QLT solutions when using the respective
meshes () and (b) shown in figure 6. (@) The equally spaced pressure contours took values between
10.35 and 10.76; (b) the pressure contours shown were those obtained after 15 nonlinear iterations
and took values between —1.7413 x 10° and —1.7412 x 10°.

The quadrilateralizations used to study the bqQLq implementation were based on the
vertices of the triangulation shown in figure 6a. For the triangulations, exact
similarity was achieved by successive refinement of a coarse mesh, in which new
triangle vertices were introduced at the bisectors of each triangle edge. The
parameter h used to characterize the mesh sizes was chosen to be

h:= (max{l*rl}/l!)l) , (4.2)
7€),

where |7| denotes the area of a triangle (or quadrilateral) and |22| denotes the area of
the flow domain. The triangulation shown in figure 6b was designed to have some
poorly shaped triangles to see if such a triangulation would affect the convergence
properties of the method. In fact, we were unable to get the scheme to converge to
a solution on the mesh shown in figure 66, and it is suspected that the difficulties
arose from the approximation of the pressure field, an example of which, after 15
Newton iterations had been made, is shown in figure 7. Here are given equally spaced
contours of the pressure fields obtained at a Reynolds number of 0.082, as used in the
convergence studies described below, on each of the meshes shown in figure 6. The
contours for the pressure field obtained on the more regular mesh (see figure 7a) are
a reasonably good approximation to the exact solution, whereas the contours shown
in figure 7b do not provide a good approximation. This experiment suggests that
some care should be taken not to let the meshes become too distorted as the free
surface iterations proceed.

The convergence studies were carried out to see how nearly the implementations
recovered the estimate (2.58) and, to this end, the ‘error constants’

E(Syu—uw,)/PE(Fu) and  E(I,p—p,)/WPE.(F,p),
Phil. Trans. R. Soc. Lond. A (1992)
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80
1/h
Figure 8. Convergence properties of the velocity fields for numerical solutions of Jeffrey—Hamel flow.
o, , £=0.082, qur method; A, ——, R =18.1, QLT method; e, ———, K =0.082, highly
symmetrical mesh, QLT method; g, ----, R = 0.082, bqLqQ method; A, ——, R = 0.082, highly

symmetrical mesh, bqLq method.

12

1/h
Figure 9. Convergence properties of the pressure fields for numerical solutions of Jeffrey—Hamel flow.
u, , £ =0.082, qur method; a, ——, R =18.1, QLT method; e, ———, B = 0.082, highly
symmetrical mesh, QLT method; o, ----, R = 0.082, bQLQ method; A, , B =0.082, highly

symmetrical mesh, bQrq method.

for r = 1,2 and oo, have been determined on a sequence of meshes. The results for the
convergence of the velocity fields, for » = 2, are shown in figure 8, and for the pressure
fields in figure 9. Here the errors have been plotted as a function of 27! to display
clearly the structure on the finer meshes, and the symbol £, denotes the normalized
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Numerical and asymptotic methods for certain viscous free-surface flows 31

error referred to above. It is seen from figure 8 that the velocity fields converged at a
rate proportional to A%, as expected theoretically. For the QLT method the constant of
proportionality was just less than 0.5, for each of the triangulations tested here and
for the calculations at both the smaller and the larger Reynolds numbers. The highly
symmetrical mesh referred to in figure 8 was a symmetrical mesh based on a domain
that approximated an annular sector of a circle, whereas the basic mesh was of the
kind depicted in figure 6a. It is seen for the bqQrLq method that the constant of
proportionality associated with the convergence of the velocity field was somewhat
smaller than that for the QLT method, especially when using the symmetrical domain
and regular quadrilateralization. (Note that the convergence studies for the bQrQ
method were not carried out on the finest mesh used for the QLT studies because of
difficulties in obtaining a converged solution.)

The convergence plots for the pressure fields, shown in figure 9, indicate that the
theoretically expected convergence properties for the QLT method were nearly realized
on the meshes used in the study. By contrast, the results shown for the bqLQ method
do not show the normalized pressure error to be proportional to %%, for small A, as
expected theoretically. Further details of the pressure field will be described below
when discussing the results relating to figure 12.

The above convergence studies should provide a rough idea of the accuracy
achievable on a given mesh in the numerical experiments associated with the
experimental situation.

(i) Static meniscus

To provide some kind of check on the free-surface capability of the numerical
procedures, convergence studies have been carried out by computing the shape of the
meniscus of the free surface of a liquid near a plane vertical wall. Suppose that the
rigid wall lies along the line x = 0 and that the liquid domain is of infinite extent in
the direction of positive x. Let the free surface be denoted by {(x), and we suppose
that the origin for the vertical coordinate y is chosen to correspond to the asymptotic
height of the free surface at large distances from the wall. Since the liquid is assumed
to be at rest, the momentum equation takes a particularly simple form, yielding the
familiar hydrostatic pressure field. The absence of fluid motion means that the stress
field is everywhere isotropic and equal to the pressure. Thus (2.7) can readily be
evaluated, but we must first specify the length H used to scale the equations. The
natural length scale presented by the present problem is (7/pg)i, in terms of which
the solution to (2.7) is given by (cf. Landau & Lifschitz 1956, p. 235)

{(x) = 2{cosh [z + cosh™ (1/(2/(1 —sin&)))]} 1, (4.3)

and the maximum elevation of the free surface, at x = 0 is {(0) = +/(2(1 —sin a)).
For the numerical experiments to be described, the contact angle a was chosen to
be 1 rad and the flow domain was chosen to extend to a depth of —5.3£(0) and to have
a width of 31.6£(0). An initial triangulation of the domain was derived from a graded
quadrilateralization of the region enclosed by the exact representation of the free
surface and the boundaries just indicated. The grading was chosen such that the
ratios w;/w,,, and d,;/d, , of the widths w,, w,,, and the depths d,,d, , of adjacent
quadrilaterals were constant for a given quadrilateralization. Thus, the smallest
triangle in a tesselation was located at the corner between the meniscus and the side
wall of the domain. The left- and right-hand sides of each quadrilateral were vertical
lines, which formed the so-called spines (cf. §2¢), and along which nodal points were
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14
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ln(NI/Z)
Figure 10. Convergence study for the static meniscus problem using the QLT method. Here N denotes
the number of nodal points in the triangulation and £, measures the difference between the
computed and the exact solution. ——m——, Velocity field; —e—, free surface profile; —.—a—-—,
pressure field.

relaxed during the iterative procedure to determine the free surface. The horizontal
velocity u was set to zero along the bottom and along the two side boundaries of the
domain. The vertical velocity v was also assigned in the same way, except for the two
nodal points at which the free surface met the vertical boundaries. Setting v = 0 at
these points resulted in a method that did not converge as the mesh was refined.
The results of our numerical experiments on the meniscus problem using the QLT
method are summarized in figure 10. Because of the grading used in constructing the
triangulation and because of the modification to the mesh during the solution
procedure, it was decided to characterize the mesh refinement by the number, N, of
nodes associated with the triangulation. Thus, in figure 10 we have plotted, on
logarithmic scales, the error £, between the free surface height, the velocity field and
the pressure field, and computed counterparts of the same quantities. (Note that, in
the case of the velocity field, which is identically zero for the exact solution, the error
E, has not been normalized and the absolute values of the error have been used.) The
error has been plotted as a function of N2, the inverse of which should characterize
well the mesh size /. A least-squares regression to the errors calculated on the three
smallest meshes was found and these lines are shown in the figure. The slopes of these
regression lines were 4.09 for the velocity field, 3.02 for the surface height and 2.01
for the pressure field. The apparent superconvergence for the velocity field is
probably a consequence of the fact that the solution to the flow problem (namely zero
velocity everywhere) lies in the space spanned by the finite-element approximation.
We were uriable to complete a satisfactory convergence study for the meniscus
problem by using the bqL@ method. The computational time increased so dramatically
as the meshes were refined that it became impractical to complete the study. We had
also wanted to carry out convergence studies for the meniscus problem on narrower
domains, so that attachment conditions of either surface height or non-zero slope
would be required at both ends of the domain. However, there appears to be no
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Figure 11. Examples of velocity fields computed for the experimental situation at R = 0.369. (a) and
(b) are examples of results obtained on rather coarse meshes, and (c) was obtained on the mesh used
for the main comparisons with the experimental results; (a) and (c) were obtained by using the QuT
method, and (b) was obtained by using the bqQrq method. The velocities are given at the nodal
points of the meshes, except that the velocity at the centroids of the quadrilaterals has been
omitted in (b).

mechanism within the code to fix the pressure field at some given point of the flow
domain and it is therefore not possible to relate the pressure field in the flow domain
to that imposed by the region exterior to the flow.

(iii) Flow on an inclined plane

Before describing the main results it is instructive to try to estimate the accuracy
of the computed solutions for the flow problem at hand. Since the physical
experiments were accurate to within 1 or 2%, it is desirable that the numerical
solutions have an accuracy considerably better than 1%, say to within the range
0.1-0.5%. To achieve such accuracy we see, from figure 8, that A should not exceed
0.1 for the velocity field to be accurate to within 0.1 %, and the surface height should
then be known to within about 1 %. But, as indicated below, a mesh of this fineness,
for the present flow calculation, provided an intolerably large calculation in terms of
permissible memory and disk allocation, and also (to a lesser extent) in terms of the
computational time required by the code. Compromises were therefore needed,
though considerable care had to be taken to ensure that the meshes adopted allowed
acceptable accuracy for the solutions. Some illustrations of results obtained on
meshes that were too coarse are given in figure 11, b, where velocity fields computed
for the experimental situation at R = 0.369 are shown for the section of the channel
lying between x = 25.0 and 35.7, just upstream of the first hump. The meshes used
in these computations were based on a nearly rectangular grid of 61 x 6 points
(123 x 13 velocity nodes), for the cases shown in figure 11a,b, and of 166 x 17 points
(333 x 33 velocity nodes) for the case shown in figure 11¢. There are evident problems
associated with the coarser meshes, with the divergence condition not being at all
well approximated, especially in the case of the QuT method. On the other hand, when
using a finer mesh (see figure 11¢), it is evident that the numerical solutions obtained
from the QLT method respected the divergence constraint much more closely.
Examples of the pressure fields obtained in the fine-mesh calculations (166 x 17 grid
points) are given in figure 12. It is seen here that the continuous pressure element
used by the QLT method provided a good representation of the linear gradient in the
y-direction expected at very small Reynolds numbers, whereas the discontinuous
element associated with the bQLQ method yielded significant jumps between
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200
100
p
0
—0.1 0.3 0.7
y

Figure 12. A comparison of the computed pressure fields p as a function of the height y above the
reference plane. The pressures here were obtained at x = 42.6 at a Reynolds number of 0.369.
—a—, The QLT method ; @, the bQLQ method.

quadrilaterals. On average the pressure field generated by the bQLq method agreed
closely with that obtained with the QLT method, but the reason for the large
discontinuities in p between quadrilaterals is not clear. Similar results also obtained
for slices of the pressure fields in the streamwise direction.

The computations made by using the fine mesh (cf. figure 9¢) required 16 MB of
core and a further 80 MB of disk space to store the factored stiffness matrix, and took
the order of an hour to complete on a twin-processor Ardent Titan (P1) machine. We
would have preferred to have made the main computations on a finer grid, but that
was not routinely feasible as a halving of the mesh (i.e. a doubling of the number of
nodes) required approximately 350 MB of disk space to effect the solution process.
(The solution procedures used by the code when the linear system is too large to be
held in the core memory are discussed by Hasbani & Engelman (1979).)

The spines (cf. §2e(ii)) used to constrain the movement of the grid points when
determining the free surface height were chosen to be normal to the reference plane
for the channel bed. The grid points were equally spaced in the y-direction along
these spines but, in the z-direction, the spines were adjusted so that their horizontal
spacing was closest in the regions where the magnitudes of the x-gradients of the flow
field were largest. This meant that, with only 166 grid points at our disposal, the
triangles or quadrilaterals in the upstream and downstream sections of the channel
were rather elongated but, since the velocity and pressure fields in these regions are
nearly quadratic and/or linear in their respective variables, it was hoped that the
method would nevertheless provide good approximability in these regions. Thus, in
the central zone of the channel, the spacing of the grid points was roughly 0.15 in the
x-direction and 0.1 in the y-direction.

To help assess the accuracy of the main calculations two numerical experiments
were carried out on the very fine mesh (667 x 67 velocity nodes) and the solutions
were compared with those on the coarser mesh (333 x 33 velocity nodes) on which the
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main experiments were made. At B = 0.369 the difference in the surface heights ¢
between the two computations was less than 0.5% in both the E, and £ measures
(cf. §2d, and see below in §4b for further details of how these quantities were
determined) even though the velocity and pressure fields differed by approximately
1% in the E, measure and by 34 % in the £ measure. Paradoxically, at the larger
Reynolds number of 7.59, the velocity and pressure fields differed by only 0.5% in
the B, measure and by approximately 2.8 % in the £ measure; the surface heights
in this case differed by approximately 0.4% in both the £, and E_ measures. The
large differences in the £ measures between the calculations on the coarser and fine
meshes is somewhat disconcerting in view of the scale of the computations required
to achieve such accuracy. On the other hand, the test does suggest that, in view of
the anticipated convergence order of the method, the surface heights were found to
an accuracy of better than 1% in the main computations.

(b) The lubrication models

It is instructive to examine how well the lubrication models presented in §2¢ are
able to approximate the properties of the flows under consideration. To carry out this
assessment we make comparisons both with the experimental data and with
solutions obtained from our computed solutions to the Navier—Stokes equations. For
the present discussion we assume that the numerical solutions provide a good
approximation to the solution of the complete flow problem, anticipating the
discussion in later sections of the paper.

The main comparisons to be reported are those of the predicted and the
experimentally determined heights of the free surface above the plane y =0, as
defined in §3b, as a function of distance = (:= &/b,) along the plane. Let us denote
the free-surface height, scaled by the height b, of the bumps, by the symbol ¢,
suitably adorned to indicate whether the height has been determined experimentally,
by computation or from the lubrication models. Thus let {, denote solutions
obtained by finite-element computation, let {;x denote the heights given by the
standard lubrication model (2.36) and let {1, k = 0,1,2,4, 00, be those predicted by
the improved lubrication models (2.45). The experimental free-surface heights will be
denoted by the symbol {g.

Quantitative comparisons between the variously determined surface heights were
made in the manner described in §2d. Suppose that experimental measurements were
made at locations #;, ¢ = 1,..., N, and let .#, { be an interpolant of an approximant
determined from one of the theoretical models. Then we can use the ‘error’ formula
(2.56) with the identifications that X, = {x;: ¢ = 1,...,N} and &, is the collection of
intervals

[y, 3(%, +,)], [3(2;_y +2;), 3(2;, +2;)] for 2<i<N—1, and [3(xy_1+2ay), xy].

It is convenient to normalize all such error formulae so that the errors can be
expressed as a percentage of the appropriate norm of the function under
consideration. We have chosen to normalize the formulae by the quantity ¥,(§—§(0)),
where ¢ denotes the empirical data, where applicable, or else a computed solution.
Note that the upstream height, (0), of the free surface has been subtracted from the
surface heights, {, so that only the perturbations of the free surface from the uniform
stream are considered when estimating the ‘size’ of the functions being approxi-
mated. In the ensuing discussion it will be assumed that all errors have been
normalized in this way, and therefore are often referred to as percentage errors.
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Table 1. Quantitative comparisons between the free surface heights §;,, k = 0,1,2,4 and oo, predicted
by the improved lubrication models with experimental observations {y and with numerical solutions &,
to the full mathematical problem, as determined by the QLT method

(R is the Reynolds number; S is the surface tension parameter; {*(0) denotes the upstream free-
surface height; N gives the number of experimental observations. The errors £, and £ are defined
in §2d, and the norms Z, and Z, are E,({,—{,(0)) and E_({;—{:(0)) respectively.)

R 0.369 2.44 5.03 7.59 12.2
N 34.2 9.80 6.36 4.50 3.38
£*(0) 0.209 0.390 0.484 0.575 0.664
N 68 68 76 86 125

Z, 13.1 12.9 13.3 13.7 14.7
Eo(IL—L0)/ 2o 0.010 0.015 0.045 0.081 0.148
Ey( I, — L)) 2 0.012 0.016 0.022 0.038 0.067
Ey( Il —L0)] 2 0.012 0.016 0.020 0.033 none
Ey( I, —L0)) 2 0.012 0.016 0.021 0.033 none
Ey(IEe—IL)) 2o 0.0059 0.019 0.047 0.083 0.142
Ef(IL—IE,))] 2, 0.0048 0.0094 0.016 0.028 0.056
By I~ IL,)) 2 0.0048 0.0093 0.015 0.025 none
Ey(IL—IC)] 2 0.0048 0.0093 0.015 0.025 none
Ey(ILo—IL,)] 2o 0.0048 0.0095 0.015 0.026 none
Z, 0.978 0.951 0.955 0.968 0.995
B (50 —Ce) ) D, 0.023 0.022 0.046 0.084 0.156
E (I —L)] % 0.025 0.034 0.041 0.074 0.149
E (5, — )] 2, 0.025 0.034 0.039 0.061 none
E (I w—Le) ] % 0.025 0.034 0.039 0.068 none

Numerical solutions to the standard lubrication model (2.36) were obtained by
using a fourth-order Runge-Kutta method. (A check of the procedure was also made
by using a backward Euler method on a very fine mesh, and the test indicated that
the numerical approximations to (2.36) reported herein were accurate to within
0.1%.) The third-order models (2.45), incorporating surface tension effects, were
solved by using a high-order package (coLxEw) for two-point boundary-value
problems (cf. §2¢) and again the mesh size was chosen to be fine enough to ensure an
accuracy of better than 0.1% for the numerical solutions.

Before giving a detailed description of the comparison of the various lubrication
models with the experimental results it is worthy of note that the lubrication model,
LO (equation (2.35)) incorporating the effects of surface tension and the model LX,
not including the surface tension effects (equation (2.36)) yielded very nearly the
same solutions. So, for example, under the conditions corresponding to a Reynolds
number of 12.2 (for which § = 3.38), the solutions to (2.35) and (2.36) differed by less
than 0.68 % in the E, measure and for a Reynolds number of 0.369 (S = 34.2) the
E, difference was less than 1.31%. In both cases the E, differences were less than
0.5%. By contrast, it was found (see below and in table 1 for details) that the
inclusion of a term allowing for inertial effects had a significant influence on the
solution. So, for example, at R = 7.59, the free surface height predicted by the 1.0
model differed from the experimental results by 8.1 % (in the £, measure), whereas
the predictions from the L1, L2, L4 or Loo models differed by less than 4% from the
experimental measurements. Thus, it is seen that the surface-tension forces played
only a very minor role in the quantitative comparisons to be described ; however, as
explained in §2¢, the inclusion of the third-order derivative in (2.45) significantly
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L (b)

"

0 20 40 60 80 0 20 40 60 80
X X

Figure 13. Comparison of the free-surface heights {*(: = H{/b,) predicted by the lubrication models
with experimental observations and with numerical solutions to the full mathematical problem. e,
Experimental values; ———, lubrication model L0 of (2.45); -~ -- , lubrication model L1 of (2.45);
, lubrication model L4 of (2.45); ——, finite element solution. Lubrication models L0 and L4
compared with experimental observations: (a) R = 0.369; (b) R = 2.44; (c) R = 5.03; (d) R = 7.59.
(¢) Lubrication models 10 and L4 compared with finite element solution, B = 7.59; (f) L0 and
L1 models compared with experiment, R = 12.2.

extended the range of Reynolds numbers for which numerical solutions were
obtainable.

The efficacy of the models in describing the experimental observations is illustrated
in figure 13 and quantitive comparisons are given in table 1. At the two smallest flow
rates used in the experiments, for which R = 0.369 and 2.44, both the inertia-free
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(LO) and the improved (L.4) lubrication models closely represent the observations (see
figure 13a,b). At R = 0.369 both lubrication models differed from the observations
by only about 1% (in our £, measure) and by only about 2% at the very worst
points. Moreover, both the models predicted surface profiles differing by only
approximately 3% from the profiles computed from the full equations. At R = 2.44,
as seen in figure 135, there were small differences between the two lubrication models
but, even so, they both give a fairly good representation of the experimental
observations. Note that, in figure 13 we have plotted the quantity {*(:= H{/b,)
rather than using the scaling based on the upstream height. Thus the height of the
channel bed is the same in all sections of the figure (and see figure 14 below, where
b is shown explicitly) and upstream and downstream depths are seen to be different
at the different flow rates, corresponding to what is seen in the experiments. It should
also be noted that the solution ¢ to the basic lubrication model (2.36) is the same for
all flow rates.

In contrast to the situation depicted in figure 13a and b there were considerable
differences between the model LO and the improved model L4 at a flow rate for which
R = 5.03, as shown in figure 13¢ (and see table 1), and only the improved model gave
a good representation of the observations. The results of quantitative comparisons
are given in table 1 and it is seen there that the improved model differed from the
experimental data by only 1.5% in the E, measure, whereas the standard model
differed by 4.5%. (At the same flow rate, respective differences between the
improved and standard models, in comparison with the finite-element solution were
1.5% and 4.7%.) At the flow rate for which B = 7.59 (cf. figure 13d) the differences
between the two lubrication models became even more apparent. Again the
improved model (L.4) provided a reasonably good representation of the experimental
results and, significantly, predicted the undulations, evident in the figure, in the lee
of the downstream bump in the channel bed: the differences were only 3.3% in the
E, measure and 6.5% at the worst. A comparison between the solutions of the
lubrication models and the finite element solution to the full problem at R = 7.59 is
shown in figure 13e, and we see that the improved lubrication model captures most
of the structural details of the finite-element solution, whereas the model L0 badly
misses many of the details at R = 7.59. Note that a phase-plane analysis shows that
the L1-Loo models always generate a small dip (when R > 0) in the lee of a bump,
whereas the L0 and LX models do not.

At a Reynolds number slightly in excess of 7.59 the numerical schemes for the
models L2 and L4 ceased to provide a solution and so, at a flow rate for which
R =122, the LO and L1 predictions are given in figure 13f. It is seen here that the
model LO gives a very poor description of the observed surface heights, whereas the
L1 model gives a tolerably good representation of the data, except for a considerable
degree of overshoot at the troughs of ¢%. This feature is reflected by the relatively

small value of 6.7% for o )/ Bola—t0)),

whereas the corresponding £ value for the difference between the same two
functions was nearly 15%. The model L1 failed to provide a solution at a flow rate
corresponding to the experiment at B = 16.2. For the graphs shown in figure 13 we
have mainly concentrated on the difference between the standard lubrication model
L0, the improved lubrication model L4 and the experimental observations. In fact,
for the range of experiments shown, the models L1 and L2 provided very nearly the
same solutions as did the L4 model, which feature can be seen from the comparison
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1'5:(0) :(b)

1.9f
1.5}
1.1}
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-0.1 ; : : : ‘ : ’
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x

Figure 14. Comparison of the free surface heights ¢* predicted by numerical computation (using the
QLT method) and the experimental observations. @, Experimental observation; , computed
solution. The dotted line represents the bed, b, of the channel, and the solid base line represents
the asymptotic reference plane. (@) R = 0.369; (b) R = 5.03; (¢) R = 7.59; (d) R = 12.2; (e) R = 16.2;
(f) R =20.5; (9) R = 25.5.
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Table 2. Comparisons of the numerically determined, free-surface heights with the experimental
observations {y,

(Here ¢, &, refer respectively to solutions obtained by the QLT and bQLQ methods. R is the
Reynolds number; S is the surface tension parameter; {*(0) denotes the upstream free-surface
height; N gives the number of experimental observations. The errors £, and £, are defined in §2d,
and the norms Z, and Z_, are E,({,—{(0)) and E ({,—{:(0)) respectively.)

R 0.369 244 5.03 7.59 122 162 205 255 314 36.6

S 32.9 980 6.36 4.50 338 277 236 208 185 1.66
£*(0) 0.209 0.390 0484 0.575 0.664 0.733 0.794 0.845 0.897 0.948
N 68 68 76 86 125 147 153 146 183 195

Zy 131 129 133 137 147 157 169 182 194 20.2
B (L —Es)/Zy 0.015 0.015 0.015 0.017 0.021 0.026 0.027 0.028 none none
E,(9¢,—8k)/Z, 0.013 0.014 0.015 0.017 0.022 0.028 0.029 0.028 none none
Z, 0.978 0.951 0955 0.968 0995 1.02 1.06 1.10 1.16 1.18

B (JL.—Ly)/%,,  0.026 0028 0028 0031 0.040 0.037 0.036 0.045 none none
B (5~ 7 0.024 0.027 0.028 0.031 0041 0.038 0.040 0.045 none none

o0

shown in table 1 between the finite-element solution and that of the various
lubrication models.

In terms of the present experiment, the above results suggest that the standard
lubrication model provides a very good approximation to the full mathematical
problem at Reynolds numbers less than about one, and that the improved models
extended the range of applicability of the lubrication theories by an order of
magnitude in the Reynolds number.

(¢) The finite-element approximations

Detailed comparisons between the predictions for the free-surface height obtained
using the QLT method and the experimentally determined heights are given in figure
14. Also shown in this figure, as a dotted line, is the bed b of the channel and the
reference plane for the channel. The quantitative comparisons between the computed
solutions, for both the QuT and the bQLQ methods, and the experimental results are
given in table 2.

The agreement between the experimental observations and the numerical
predictions is extremely close at the smaller Reynolds numbers, differing by less than
3% in the I, measure for the cases R = 0.369, 2.44 and 5.03. For the flows at the
Reynolds numbers of 7.59 (see figure 14¢) and 12.2 (figure 14d) the numerical
solutions captured the undulation in the lee of the second hump, but showed some
small inaccuracies in the free surface structure in the region between the two humps.
On the other hand, as shown in figure 14e, f, there is very good agreement between
the numerical predictions and the experimental observations for the flows with
R =16.2 and 20.5, except for the region immediately upstream of the first hump.
The downstream undulations in the free surface height near x = 55 were captured
beautifully by the numerical solution in both cases.

At a flow rate corresponding to R = 25.5 considerable care was needed to obtain
numerical solutions, and very small steps in the Reynolds-number continuation
procedure were needed. The main obstacle appeared to be one of achieving
convergence of the nonlinear solution procedure. In general terms, the numerical
solution shown in figure 14¢ agrees reasonably well with the experimental
observations, but there are significant differences near the local maxima and minima
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)

Figure 15. Computed velocity and pressure fields obtained, by using the QLT method, in the region
between the two bumps where the surface slopes were greatest; (a) and (c) are velocity vectors
at the nodal points of the mesh and (b) and (d) are pressure contours. (a), (b), R = 20.5; (c), (d),
R =255.

of ¢ and, in particular, the numerical solution displays some structure in the region
between x =55 and 60 not evident in the experimental data. A quantitative
comparison (see table 2) between the numerical solution and the experimental results
shown in figure 14¢ indicates that the £, measure of the difference between the two
functions is only 2.8% and that the £ difference is 4.5%.

It was evident from the computations that the region where the surface slopes
were largest was the most difficult to resolve numerically. Examples of the numerical
solutions in this region are given in figure 15 for the experiments at R = 20.5 and
25.5. Here the velocity vectors at the nodal points for the computations are shown
and contours for the pressure fields are also given, for that part of the flow domain
with x€[39.0,43.7]. It is evident from these pictures that the free surface slopes were
considerably larger and occurred at a slightly downstream location at the larger flow
rate when compared with the flow at R = 20.5. But, in addition, it is seen, near the
points of maximum surface slope, that the velocity vectors did not properly respect
the kinematical condition at the free surface, and the pressure contours were not very
smooth. We return to this issue below in §5.

A summary of the representation of the experimental observations by the various
theoretical models is given in figure 16. We have given here the E, differences, to
indicate an integrated difference between the models and the experimental results.
The graph shows how, for the QLT finite-element computations the differences
remained nearly constant over the range of Reynolds numbers (cf. table 2). The
various lubrication models, by comparison, performed quite well up to B = 2.44, and
the improved models gave a reasonable representation of the data up to R = 7.59,
but these models either did not have any solution, or provided very poor
approximations, at the larger Reynolds numbers.

(d) Further experiments

The measured surface profiles {*(x) for flows at R = 31.4 and 36.6 are shown in
figure 17. In general appearance the profiles shown here are not dissimilar from those
shown in figure 14, though there are some evident differences upstream of the first
hump and downstream from the second hump. One particularly noticeable aspect of
these experiments at the larger flow rates was the very large surface slopes observed
in the region between the two humps. Thus, for the experiments at B = 20.5 and 25.5
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Figure 16. A summary of the £, differences between the predictions of various models and the
experimental observations. @, -+ - , LX model; A, ----, L1 model; A , Loo model; g, —-—, QLT
computation.
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Figure 17. Free-surface heights measured at Reynolds numbers in excess of those for which
numerical solutions were obtained. (a) R = 31.4; (b) R = 36.6.

the maximum observed surface slopes were approximately 45° and 60° respectively
(cf. figure 15), whereas the maximum surface slopes for the respective experiments
at R = 31.4 and 36.6 were 66° and 72°. (Note that the maximum slopes encountered
at the smaller flow rates were of the same order as those of the slope of the bed. At
R = 0.369, the maximum surface slope was approximately 17°, and at B = 12.2 it
was approximately 19°.) Moreover, in the zone where the sharp jump in surface height
took place, it was found, for the experiments at R = 31.4 and 36.6, that the free
surface exhibited a small, but measurable, temporal variation in amplitude, of the
order of +0.10 mm, compared with a total surface displacement of over 12 mm.
Away from this sensitive region the flow was steady, at least to within the accuracy
(0.01 mm) of our measurements. Any unsteadiness in the free surface heights at
smaller flow rates (i.e. for R < 25.5) was insignificant enough not to have been
especially noticed during the recording of the data.

Another potentially important aspect of the interpretation of the experimental
data is the possibility of three-dimensional effects influencing the measurements at
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the centreline of the channel. A check was made in all the experiments to see if there
were significant levels of non-uniformity across the channel. The most noticeable
cross-channel variations were observed in the two experiments at the largest flow
rates: the three-dimensional effects appeared to emanate from the flow on the
leeward side of each hump, near the side walls of the channel, stretching out into the
main flow at a relatively shallow angle of 10° or 15°. As indicated, this effect was most
prominent at the larger flow rates but, even for the case with R = 36.6, did not
appear to be a dominating factor. Thus, for example, in all experiments, the free
surface in the central 40 % of the channel was flat, in the cross-channel direction, to
within 1% of the surface deflection at that location. Even for the flow at R = 36.6,
where the most significant cross-channel variations were encountered, the non-
uniformity amounted to no more than 10% of the surface displacement, with the
maximum or minimum points for the cross-channel surface elevation being within a
distance of 25 or 30 % of the half-width of the channel from the side walls.

5. Concluding remarks

The comparisons described in this study were absolute ones, in the sense that there
were no free parameters available with which to adjust the fit of the data. Therefore
the close agreement, of the order of 2%, between the theoretical predictions and the
experimental observations is as close as could reasonably be expected in view of the
accuracies involved with the comparison. One aspect of the study of particular
interest to us was the rather extensive range of applicability of the lubrication
models. It seems clear from this study that such models have a valuable range of
applicability, with the standard approximation providing a useful model for the
observed flows up to Reynolds numbers of O(1), and that, by making allowance for
inertial effects, the range of applicability was expanded by nearly an order of
magnitude in E.

Numerical solutions to the full problem were obtained only up to a Reynolds
number of approximately 25. We are not sure why solutions beyond this Reynolds
number were not obtainable, but it is possible that the difficulties are linked to a
bifurcation near B = 25 to another steady flow, or to an unsteady motion. There is
some experimental evidence that the flow was not completely steady in the cases
with B = 31.4 and 36.6 near the place where the free surface reached its greatest
slope.
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igure 1. A photograph indicating the free-surface profile for flow at a Reynolds number of
pproximately 12. The flow is from right to left. The free surface of the liquid in the central portion
[ the channel is indicated by the lower edge of the thin line which derives from the meniscus on
ae side wall of the channel; the slight thickening of this line on the leeward side of the humps
dicates the presence of some local structure near the side walls of the channel. The distance
etween the crests of the two humps in the channel bed is 100 mm.
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